Abstract. We have recently identified a novel 190-kD calmodulin-binding protein (p190) associated with the actinobased cytoskeleton from mammalian brain (Larson, R. E., D. E. Pitta, and J. A. Ferro. 1988. Braz. J. Med. Biol. Res. 21:213-217; Larson, R. E., E S. Espindola, and E. M. Espreafico. 1990. J. Neurochem. 54:1288-1294. These studies indicated that p190 is a phosphoprotein substrate for calmodulindependent kinase II and has calcium-and calmodulinstimulated MgATPase activity. We now have biochemical and immunological evidence that this protein is a novel calmodulin-binding myosin whose properties include (a) Ca 2+ dependent actin activation of its MgATPase activity, which seems to be mediated by Ca 2+ binding directly to calmodulin(s) associated with p190 (maximal activation by actin requires the presence of Ca 2+ and is further augmented by addition of exogenous calmodulin); (b) ATP-sensitive cross-linking of skeletal muscle F-actin, as demonstrated by the lowspeed actin sedimentation assay; and (c) cross-reactivity with mAbs specific for epitopes in the head of brush border myosin I. We also show that p190 has properties distinct from conventional brain myosin II and brush border myosin I, including (a) separation of p190 from brain myosin II by gel filtration on a Sephacryl S-500 column; (b) lack by p190 of K+-stimulated EDTA ATPase activity characteristic of most myosins; (c) lack of immunological cross-reactivity of polyclonal antibodies which recognize p190 and brain myosin II, respectively; (d) lack of immunological recognition of p190 by mAbs against an epitope in the tail region of brush border myosin I; and (e) distinctive proteolytic susceptibility to calpain. A survey of rat tissues by immunoblotting indicated that p190 is expressed predominantly in the adult forebrain and cerebellum, and could be detected in embryos 11 d post coitus. Immunocytochemical studies showed p190 to be present in the perikarya and dendritic extensions of Purkinje cells of the cerebellum.
Myosin-Va is a Ca(2+)/calmodulin-regulated unconventional myosin involved in the transport of vesicles, membranous organelles, and macromolecular complexes composed of proteins and mRNA. The cellular localization of myosin-Va has been described in great detail in several vertebrate cell types, including neurons, melanocytes, lymphocytes, auditory tissues, and a number of cultured cells. Here, we provide an immunohistochemical view of the tissue distribution of myosin-Va in the major endocrine organs. Myosin-Va is highly expressed in the pineal and pituitary glands and in specific cell populations of other endocrine glands, especially the parafollicular cells of the thyroid, the principal cells of the parathyroid, the islets of Langerhans of the pancreas, the chromaffin cells of the adrenal medulla, and a subpopulation of interstitial testicular cells. Weak to moderate staining has been detected in steroidogenic cells of the adrenal cortex, ovary, and Leydig cells. Myosin-Va has also been localized to non-endocrine cells, such as the germ cells of the seminiferous epithelium and maturing oocytes and in the intercalated ducts of the exocrine pancreas. These data provide the first systematic description of myosin-Va localization in the major endocrine organs of rat.
Myosin can be precipitated from soluble fraction under different assay conditions. This paper describes a new method for precipitating myosin V from rat brain soluble fraction. Brains were homogenized in 50 mM imidazole/HCl buffer, pH 8.0, containing 10 mM EDTA/EGTA, 250 mM sucrose, 1 mM DTT and 1 mM benzamidine, centrifuged at 45000 x g for 40 min and the supernatant was frozen at -20 degrees C. Forty-eight hours later, the supernatant was thawed, centrifuged at 45000 x g for 40 min and the precipitate was washed in 20 mM imidazole buffer pH 8.0. SDS/PAGE analysis showed four polypeptides in the precipitate: 205, 150, 57 and 43 kDa. The precipitate presented high Mg(2+)-ATPase activity, which co-purifies with p205. This polypeptide was recognized by a specific myosin V antibody and was proteolised by calpain, generating two stable polypeptides: p130 and p90. The Mg(2+)-ATPase activity was not stimulated by calcium in both the absence and presence of exogenous calmodulin and the K+/EDTA-ATPase activity represented 25% of the Mg(2+)-ATPase activity. In this work, myosin V from rat brain was precipitated by freezing the soluble fraction and was co-purificated with a 45 kDa polypeptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.