Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases.
Large structural variations (SVs) in the genome are harder to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. Here we analyze the effects of SVs on gene expression, quantitative traits, and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalog of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) frequently segregate within closely related clonal populations, are weakly linked to single nucleotide polymorphisms (SNPs), and show other genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits such as cell shape, cell growth under diverse conditions, sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases.
BackgroundSevere trauma induces a widespread response of the immune system. This “genomic storm” can lead to poor outcomes, including Multiple Organ Dysfunction Syndrome (MODS). MODS carries a high mortality and morbidity rate and adversely affects long-term health outcomes. Contemporary management of MODS is entirely supportive, and no specific therapeutics have been shown to be effective in reducing incidence or severity. The pathogenesis of MODS remains unclear, and several models are proposed, such as excessive inflammation, a second-hit insult, or an imbalance between pro- and anti-inflammatory pathways. We postulated that the hyperacute window after trauma may hold the key to understanding how the genomic storm is initiated and may lead to a new understanding of the pathogenesis of MODS.Methods and findingsWe performed whole blood transcriptome and flow cytometry analyses on a total of 70 critically injured patients (Injury Severity Score [ISS] ≥ 25) at The Royal London Hospital in the hyperacute time period within 2 hours of injury. We compared transcriptome findings in 36 critically injured patients with those of 6 patients with minor injuries (ISS ≤ 4). We then performed flow cytometry analyses in 34 critically injured patients and compared findings with those of 9 healthy volunteers. Immediately after injury, only 1,239 gene transcripts (4%) were differentially expressed in critically injured patients. By 24 hours after injury, 6,294 transcripts (21%) were differentially expressed compared to the hyperacute window. Only 202 (16%) genes differentially expressed in the hyperacute window were still expressed in the same direction at 24 hours postinjury. Pathway analysis showed principally up-regulation of pattern recognition and innate inflammatory pathways, with down-regulation of adaptive responses. Immune deconvolution, flow cytometry, and modular analysis suggested a central role for neutrophils and Natural Killer (NK) cells, with underexpression of T- and B cell responses.In the transcriptome cohort, 20 critically injured patients later developed MODS. Compared with the 16 patients who did not develop MODS (NoMODS), maximal differential expression was seen within the hyperacute window. In MODS versus NoMODS, 363 genes were differentially expressed on admission, compared to only 33 at 24 hours postinjury. MODS transcripts differentially expressed in the hyperacute window showed enrichment among diseases and biological functions associated with cell survival and organismal death rather than inflammatory pathways. There was differential up-regulation of NK cell signalling pathways and markers in patients who would later develop MODS, with down-regulation of neutrophil deconvolution markers. This study is limited by its sample size, precluding more detailed analyses of drivers of the hyperacute response and different MODS phenotypes, and requires validation in other critically injured cohorts.ConclusionsIn this study, we showed how the hyperacute postinjury time window contained a focused, specific signat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.