The woman’s gut microbiota during pregnancy may support nutrient acquisition, is associated with diseases, and has been linked to infant health. However, there is limited information on gut microbial characteristics and dependence in pregnant women. In this study, we provide a comprehensive overview of the gut microbial characteristics of 1479 pregnant women using 16S rRNA gene sequencing of fecal samples. We identify a core microbiota of pregnant women, which displays a similar overall structure to that of age-matched nonpregnant women. Our data show that the gestational age-associated variation in the gut microbiota, from the ninth week of gestation to antepartum, is relatively limited. Building upon rich metadata, we reveal a set of exogenous and intrinsic host factors that are highly correlated with the variation in gut microbial community composition and function. These microbiota covariates are concentrated in basic host properties (e.g., age and residency status) and blood clinical parameters, suggesting that individual heterogeneity is the major force shaping the gut microbiome during pregnancy. Moreover, we identify microbial and functional markers that are associated with age, pre-pregnancy body mass index, residency status, and pre-pregnancy and gestational diseases. The gut microbiota during pregnancy is also different between women with high or low gestational weight gain. Our study demonstrates the structure, gestational age-associated variation, and associations with host factors of the gut microbiota during pregnancy and strengthens the understanding of microbe–host interactions. The results from this study offer new materials and prospects for gut microbiome research in clinical and diagnostic fields.
Purpose The major purpose of this study was to detect the changes in gut microbiota composition and inflammatory cytokines production associated with acute and chronic insomnia. This study also evaluated the relationship between gut microbiota changes and increased inflammatory cytokines in insomnia patients. Patients and Methods Outpatients with acute and chronic insomnia (aged 26–55 years; n=20 and 38, respectively) and age/gender-matched healthy controls (n=38) were recruited from a southern China region. Participants’ gut microbiome, plasma cytokines, and self-reported sleep quality and psychopathological symptoms were measured. Results The gut microbiomes of insomnia patients compared with healthy controls were characterized by lower microbial richness and diversity, depletion of anaerobes, and short-chain fatty acid (SCFA)-producing bacteria, and an expansion of potential pathobionts. Lachnospira and Bacteroides were signature bacteria for distinguishing acute insomnia patients from healthy controls, while Faecalibacterium and Blautia were signature bacteria for distinguishing chronic insomnia patients from healthy controls. Acute/chronic insomnia-related signature bacteria also showed correlations with these patients’ self-reported sleep quality and plasma IL-1β. Conclusion These findings suggest that insomnia symptomology, gut microbiota, and inflammation may be interrelated in complex ways. Gut microbiota may serve as an important indicator for auxiliary diagnosis of insomnia and provide possible new therapeutic targets in the field of sleep disorders.
Background/Aims: Circular RNAs (circRNAs) are transcribed prevalently in the genome; however, their potential roles in multiple cardiovascular diseases, particularly preeclampsia (PE), are not yet well understood. This study investigated the expression profiles of circRNAs and explored circRNA-mediated pregnancy-associated plasma protein A (PAPP-A) expression as a potential biomarker for PE before 20 weeks of pregnancy. Methods: A nested case-control two-phase screening/validation study was performed in pregnant women before 20 weeks of gestation (before clinical diagnosis) at Guangzhou Women and Children’s Medical Center from 2012 to 2015. In the screening phase, circRNA expression profiles of blood cells were assessed using a human circRNA microarray, which was designed to detect simultaneously 5396 circRNAs, in 5 patients with PE and 5 age- and gestational week-matched controls. In the validation phase, 18 circRNAs in blood cells predicted by bioinformatics tools were validated by quantitative reverse transcription PCR in a cohort of 60 patients (PE and age-, gestational week-, and sample storage time-matched controls). Then, we examined the involvement of circRNAs in PE-related pathways via interactions with miRNAs by multiple bioinformatics approaches. Bioinformatics analysis predicted that hsa_circ_0004904 and hsa_circ_0001855 miRNA sponges directly target PAPP-A. PAPP-A was verified in the serum of the same cohort of patients using an enzyme-linked immunosorbent assay. Finally, we combined PAPP-A with circRNAs to create a novel preclinical diagnostic model for PE with logistic regression and evaluated the efficiency of this model with receiver operating curve analysis. Results: Volcano plot analysis using various parameters showed that circRNAs were differentially expressed among both groups (P < 0.01, fold change > 2). In the screening phase, we found that 2178 circRNAs were differentially expressed between the control and PE groups, in which 884 circRNAs were downregulated and 1294 circRNAs were upregulated in the PE group compared with the control group. In the validation phase, two circRNAs, hsa_circ_0004904 and hsa_circ_0001855, were significantly upregulated in PE patients compared with healthy pregnant women (P < 0.05). PAPP-A expression levels, related to the two circRNAs based on bioinformatics prediction, were increased in the PE group compared with the control group. The area under the curve of the combined model was 0.94 in the predicted PE subjects. Conclusions: This is the first study to report circRNA profiling in patients with PE prior to the onset of symptoms. Our data suggested that hsa_circ_0004904 and hsa_circ_0001855 combined with PAPP-A might be promising biomarkers for the detection of PE. Moreover, circRNAs may provide new insights into the potential mechanisms underlying the pathophysiology of PE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.