Strong metal/oxide interactions have been acknowledged to play prominent roles in chemical catalysis in the gas phase, but remain as an unexplored area in electrocatalysis in the liquid phase. Utilization of metal/oxide interface structures could generate high performance electrocatalysts for clean energy storage and conversion. However, building highly dispersed nanoscale metal/oxide interfaces on conductive scaffolds remains a significant challenge. Here, we report a novel strategy to create metal/oxide interface nanostructures by growing mixed metal oxide nanoparticles on carbon nanotubes (CNTs) and then selectively promoting migration of one of the metal ions to the surface of the oxide nanoparticles and simultaneous reduction to metal. Employing this strategy, we have synthesized Ni/CeO2 nanointerfaces coupled with CNTs. The Ni/CeO2 interface promotes hydrogen evolution catalysis by facilitating water dissociation and modifying the hydrogen binding energy. The Ni/CeO2-CNT hybrid material exhibits superior activity for hydrogen evolution as a result of synergistic effects including strong metal/oxide interactions, inorganic/carbon coupling, and particle size control.
Ion is one of the most common additives that can impart electrical conductivity to insulating hydrogels. The concurrent toughening effect of ions, however, is often neglected. This work reports the extreme toughening of hydrogels via the synergistic effect of cations and anions, without the need for specific structure design or adding other reinforcements. The strategy is to equilibrate a physical double network hydrogel consisting of both multivalent cation-and kosmotropic anion-sensitive polymers in specific salt solutions that can induce cross-linking and salting-out simultaneously. Both effects are proven positive to boost the mechanical performance and electrical conductivity of the original weak gel, and result in a tough conductive gel with exceptional physical properties, achieving significant enhancements in fracture stress, fracture energy, and ionic conductivity by up to 530-, 1100-, and 4.9-folds, respectively. The optimal fracture stress and toughness reach approximately 15 MPa and 39 kJ m -2 , exceeding most state-of-the-art tough conductive hydrogels. Meanwhile, a satisfactory ionic conductivity of 1.5 S m -1 is attained. The presented simple strategy is also found generalizable to other salt ions and polymers, which is expected to expand the applicability of hydrogels to conditions involving demanding mechanical durability.
Sepsis is a life-threatening condition caused by dysregulated host responses to infection. Widespread vascular hyperpermeability and a “cytokine storm” are two pathophysiological hallmarks of sepsis. Here, we show that intermedin (IMD), a member of the calcitonin family, alleviates organ injury and decreases mortality in septic mice by concurrently alleviating vascular leakage and inflammatory responses. IMD promotes the relocation of vascular endothelial cadherin through a Rab11-dependent pathway to dynamically repair the disrupted endothelial junction. Additionally, IMD decreases inflammatory responses by reducing macrophage infiltration via downregulating CCR2 expression. IMD peptide administration ameliorates organ injuries and significantly improves the survival of septic mice, and the experimental results correlate with the clinical data. Patients with high IMD levels exhibit a lower risk of shock, lower severity scores, and greatly improved survival outcomes than those with low IMD levels. Based on our data, IMD may be an important self-protective factor in response to sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.