Hypoxia is a crucial factor in tumor aggressiveness and resistance to therapy, especially in glioblastoma. Our previous results have shown that melatonin exerts antimigratory and anti-invasive action in glioblastoma cells under normoxia. However, the effect of melatonin on migration and invasion of glioblastoma cells under hypoxic condition remains poorly understood. Here, we show that melatonin strongly reduced hypoxia-mediated invasion and migration of U251 and U87 glioblastoma cells. In addition, we found that melatonin significantly blocked HIF-1α protein expression and suppressed the expression of downstream target genes, matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor (VEGF). Furthermore, melatonin destabilized hypoxia-induced HIF-1α protein via its antioxidant activity against ROS produced by glioblastoma cells in response to hypoxia. Along with this, HIF-1α silencing by small interfering RNA markedly inhibited glioblastoma cell migration and invasion, and this appeared to be associated with MMP-2 and VEGF under hypoxia. Taken together, our findings suggest that melatonin suppresses hypoxia-induced glioblastoma cell migration and invasion via inhibition of HIF-1α. Considering the fact that overexpression of the HIF-1α protein is often detected in glioblastoma multiforme, melatonin may prove to be a potent therapeutic agent for this tumor.
Neurogenesis and angiogenesis are two important processes that may contribute to the repair of brain injury after stroke. This study was designed to investigate whether transplantation of human embryonic neural stem cells (NSCs) into cortical peri-infarction 24h after ischemia effects cell proliferation in the subventricular zone (SVZ) and angiogenesis in the peri-infarct zone. NSCs were prepared from embryonic human brains at 8 weeks gestation. Focal cerebral ischemia was induced by permanent occlusion of the middle cerebral artery of adult rats. Animals were randomly divided into two groups (n=30, each) at 24h after ischemia: NSC-grafted and medium-grafted groups. Toluidine blue staining and 5'-bromo-2'-deoxyuridine (BrdU) or von Willebrand factor (vWF) immunohistochemistry were performed at 7, 14 and 28 days after transplantation. NSC transplantation increased the number of BrdU-positive cells in the ischemic ipsilateral SVZ compared with the medium control at 7 days (P<0.01). This difference in SVZ cell proliferation persisted at 14 days (P<0.01), but was not significant at 28 days (P>0.05). In addition, angiogenesis, as indicated by BrdU and vWF staining in cortical peri-infarct regions, was augmented by 46% and 65% in NSC-grafted rats versus medium-grafted rats at 7 and 14 days, respectively (P<0.05). However, this increase became non-significant at 28 days (P>0.05). Our results indicate that NSC transplantation enhances endogenous cell proliferation in the SVZ and promotes angiogenesis in the peri-infarct zone, even if it is performed in the acute phase of ischemic injury.
BackgroundThe Arabidopsis microRNA156 (miR156) regulates 11 members of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) family by base pairing to complementary target mRNAs. Each SPL gene further regulates a set of other genes; thus, miR156 controls numerous genes through a complex gene regulation network. Increased axillary branching occurs in transgenic Arabidopsis overexpressing miR156b, similar to that observed in loss-of-function max3 and max4 mutants with lesions in carotenoid cleavage dioxygenases. Arabidopsis miR156b was found to enhance carotenoid levels and reproductive shoot branching when expressed in Brassica napus, suggesting a link between miR156b expression and carotenoid metabolism. However, details of the miR156 regulatory network of SPL genes related to carotenoid metabolism are not known.ResultsIn this study, an Arabidopsis T-DNA enhancer mutant, sk156, was identified due to its altered branching and trichome morphology and increased seed carotenoid levels compared to wild type (WT) ecovar Columbia. Enhanced miR156b expression due to the 35S enhancers present on the T-DNA insert was responsible for these phenotypes. Constitutive and leaf primodium-specific expression of a miR156-insensitive (mutated) SPL15 (SPL15m) largely restored WT seed carotenoid levels and plant morphology when expressed in sk156. The Arabidopsis native miR156-sensitive SPL15 (SPL15n) and SPL15m driven by a native SPL15 promoter did not restore the WT phenotype in sk156. Our findings suggest that SPL15 function is somewhat redundant with other SPL family members, which collectively affect plant phenotypes. Moreover, substantially decreased miR156b transcript levels in sk156 expressing SPL15m, together with the presence of multiple repeats of SPL-binding GTAC core sequence close to the miR156b transcription start site, suggested feedback regulation of miR156b expression by SPL15. This was supported by the demonstration of specific in vitro interaction between DNA-binding SBP domain of SPL15 and the proximal promoter sequence of miR156b.ConclusionsEnhanced miR156b expression in sk156 leads to the mutant phenotype including carotenoid levels in the seed through suppression of SPL15 and other SPL target genes. Moreover, SPL15 has a regulatory role not only for downstream components, but also for its own upstream regulator miR156b.
1. The aim of the present study was to examine if and how rat hypoxia-induced astrocytes affect the migration of neural progenitor cells (NPC) and to investigate the expression patterns of some chemokines, such as vascular endothelial growth factor (VEGF), stem cell factor (SCF), stromal-derived factor-1alpha (SDF-1alpha), fractalkine and monocyte chemoattractant protein-1 (MCP-1) in hypoxia-induced astrocytes and their contribution to NPC migration in vitro. 2. Costar Transwell inserts were used for the chemotaxis assay and quantified changes in the chemokines mRNA for between 0 h and 24 h posthypoxia were tested using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. The results showed that the chemotaxis of astrocyte cells exposed to hypoxia for 18 h reached a peak value, whereas the chemotaxis of astrocytes exposed to hypoxia for 24 h began to decrease compared with those exposed to hypoxia for 18 h. Hypoxia upregulated chemokine VEGF, SCF, SDF-1alpha and MCP-1 expression in a time-dependent manner but downregulated fractalkine expression in astrocytes. In addition, the time points of the peak expressions for VEGF, SCF, SDF-1alpha and MCP-1 were similar to the time point of maximum NPC migration. 3. Specific inhibitors that block the binding of specific chemokines to its receptors were used for analysing the contribution of the chemokine to NPC migration. When VEGF, SCF, SDF-1alpha and MCP-1 were each inhibited independently, NPC migration was reduced. When they were inhibited together, NPC migration was obviously inhibited compared with both the control and single-block cultures, which implies that the migratory effect of hypoxia-induced astrocytes was synergetic by several chemokines. 4. In conclusion, we demonstrated the time-dependent manner of NPC migration promotion by hypoxia-induced astrocytes. We also provide evidence that soluble factors, such as VEGF, SCF, SDF-1alpha and MCP-1, released from astrocytes, direct the migration of NPC under hypoxic circumstances. Given that astrocytes were activated to all hypoxia-ischaemia diseases, these results indicate an important role for astrocytes in directing NPC replacement therapy in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.