BackgroundIt has been reported that rs940494 and rs805296 SNPs of apolipoprotein M (apoM) gene may confer the risk in the development of type 2 diabetes (T2D) and coronary artery disease (CAD) in the Han Chinese. However, a recent study demonstrated that rs805297 polymorphism is significantly associated with reduced total high density lipoprotein (HDL) levels in rheumatoid arthritis patients. But the relationship between rs805297 SNP and CAD has not been explored. The aim of the present study was to elucidate whether the rs805297 mutant allele is implicated in CAD and links to changes in blood lipid levels in these patients.MethodsThree hundred CAD patients and three hundred and twelve non-CAD patients were subjected in the present study. All subjects were confirmed by the angiography. Plasma concentrations of apoM were semi-quantitatively determined by dot-blotting analysis, and total serum lipid levels were quantified using an automated RA-1000 (Technician, USA). The genotyping of rs805297 of apoM was analyzed by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP).ResultsGenotype and allele frequencies were not significant (P = 0.5798 and 0.3834, respectively) between cases and controls. Compared with the wild-type C/C genotype, carriers of the C/A and A/A genotypes did not have an increased risk of CAD, as determined by multiple logistic regression analysis, after adjustment for age, sex, BMI, history of smoking, hypertension and hypercholesterolemia. (CA, odds ratio = 0.49, 95% confidence interval 0.15–1.87, P = 0.462; AA, odds ratio = 0.51, 95% confidence interval 0.13–1.68, P = 0.534). The plasma concentration levels of apoM did not differ significantly among carriers of the three genotypes between two groups. Lastly, control subjects with A/A genotypes had lower total levels of HDL cholesterol than did those with C/C genotypes.ConclusionsThe results presented here suggest that the rs805297 SNP is not associated with an increased risk of developing CAD, although it does independently correlate with dyslipidaemia in Han Chinese individuals.
APT (Acquisition, Pointing, and Tracking) system of space laser communication adopts compound axis structure; it consists of coarse tracking and fine tracking system. Its response speed and tracking precision mainly rests with the fine tracking system. Traditional PID control algorithm often is used in APT fine tracking system. In order to improve the dynamic performance of the system and decrease the tracking error, optimum control technology was adopted in this paper. On the basis of considering the system dynamic performance requirements and tracking precision requirement, optimum controller was designed. The simulation result shows that the bandwidth of APT fine tracking system is up to 1310 Hz, and the stable state error is less than 0.002. Compared with PID control, optimum control can improve the tracking performance of system.
Antibacterial activity of zinc oxide (ZnO) or strengthening of hydroxylapatite whisker (HAPw) had been studied and applied widely. However, antibacterial property of ZnO-HAPw was scarcely researched nowadays. The aim of this study was to further investigate several kinds of morphologies of ZnO-HAPw prepared by sol-gel technology at different pondus hydrogenii (pH) value and temperature. Four kinds of morphologies of ZnO-HAPw were granule, triangle, short rod and gongs nail at 70°C and pH=6.4, 37°C and pH=6.6, 70°C and pH=6.6, 70°C and pH=6.6. The SEM images of HAPw and ZnO-HAPw samples showed that the HAPw surface was smooth and no difference after annealing treatment. In addition, different shapes of nanoZnO fused uniformly on the HAPw surface. The EDS indicates nanoZnO fuses on HAPw surface.
This paper expounds the principle of lead-acid battery intelligent charging system, design the main circuit of the intelligent charging system, the positive and negative pulse charging circuit, control circuit and software design of intelligent charging system. Experimental results show that the system USES intelligent charging method can effectively improve the charging efficiency of battery and prolong the service life of the battery, can be widely used in lead-acid battery charging system, which has a broad prospect of industrialization and social benefits.
This article is based on the theory of fractional calculus control, and put forward a kind of fractional order PI controller design method for lateral attitude control system of unmanned aerial vehicle (UAV) model. And the unit step response of the control system is analyzed in the simulation to improve the UAV flight control system stability and robustness. Use the controller parameter tuning method and combined with fuzzy reasoning to design IOPID controller, FOPI controller and fuzzy fractional order PI controller. Then, by exploiting Matlab, the frequency domain response and unit step response characteristics of the different control systems can be plotted. The results verified that the designed fuzzy fractional order controller for the attitude control system is effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.