As a multifaceted adipokine, chemerin has been found to perform functions vital for immunity, adiposity, and metabolism through its three known receptors (chemokine-like receptor 1, CMKLR1; G-protein-coupled receptor 1, GPR1; C-C motif chemokine receptor-like 2, CCRL2). Chemerin and the cognate receptors are also expressed in the hypothalamus, pituitary gland, testis, ovary, and placenta. Accumulating studies suggest that chemerin participates in normal reproduction and underlies the pathological mechanisms of certain reproductive system diseases, including polycystic ovary syndrome (PCOS), preeclampsia, and breast cancer. Herein, we present a comprehensive review of the roles of the chemerin system in multiple reproductive processes and human reproductive diseases, with a brief discussion and perspectives on future clinical applications.
Endometriosis is a common gynecological disease, characterized by the presence of endometrial-like lesions outside the uterus. This debilitating disease causes chronic pelvic pain and infertility with limited therapeutics. Chemerin is a secretory protein that acts on CMKLR1 (Chemokine-Like Receptor 1) to execute functions vital for immunity, adiposity, and metabolism. Abnormal chemerin/CMKLR1 axis underlies the pathological mechanisms of certain diseases including cancer and inflammatory diseases, but its role in endometriosis remains unknown. Herein, our results showed that chemerin and CMKLR1 are up-regulated in endometriotic lesions by analyzing the human endometriosis database and murine model. Knockdown of chemerin or CMKLR1 by shRNA led to mesenchymal-epithelial transition (MET) along with compromised viability, migration, and invasion of hEM15A cells. Most importantly, 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA), a small molecule antagonist for CMKLR1, was evidenced to exhibit profound anti-endometriosis effects (anti-growth, anti-mesenchymal features, anti-angiogenesis, and anti-inflammation) in vitro and in vivo. Mechanistically, α-NETA exhibited a dual inhibition effect on PI3K/Akt and MAPK/ERK signaling pathways in hEM15A cells and murine endometriotic grafts. This study highlights that the chemerin/CMKLR1 signaling axis is critical for endometriosis progression, and targeting this axis by α-NETA may provide new options for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.