Chronic atrophic gastritis (CAG) is well-known related with multiple pathogenic factors and normally therapies comprised by western or Chinese medicines. The present study was designed to identify the bacterial community characterized by 16S rRNA amplicon sequencing and determine the modulate affection of bacterial composition response western and Chinese medicine Qinghuayin (QHY) as well as antibiotic on model rats. The result shown the overall structure alteration of bacterial appeared under medicine intervened, antibiotic caused a marked depletion in bacterial diversity and richness. The enrichments of Firmicutes (85.1–90.7%) in antibiotic-free converts into Bacteroidetes (30.7–34.6%) in antibiotic-added model rat were demonstrated. Firmicutes as the most dominant phylum in antibiotic-free treatments and significantly decreased till 21.9–68.5% in antibiotic-added treatments. Especially QHY-treated rats showed highest RA of Firmicutes (90.7%) and the amelioration of CAG using QHY attributed by beneficial bacterial enrichment, especially Ruminococcus, Lactobacillus and Bifidobacterium. In addition, alpha and beta diversity analysis also demonstrated the clear dispersion and aggregation that revealed the alteration and steady of bacterial community structures. In summary, QHY has potential application value in the treatment of CAG, which attributed to close relation with the modulatory of internal bacterial communities.
Chronic atrophic gastritis (CAG) is well-known related with multiple pathogenic factors and normally therapies comprised by western or Chinese medicines. The present study was designed to identify the bacterial community characterized by 16S rRNA amplicon sequencing and determine the modulate affection of bacterial composition response western and Chinese medicine Qinghuayin (QHY) as well as antibiotic on model rats. The result shown the overall structure alteration of bacterial appeared under medicine intervened, antibiotic caused a marked depletion in bacterial diversity and richness. The enrichments of Firmicutes (85.1-90.7%) in antibiotic-free converts into Bacteroidetes (30.7-34.6%) in antibiotic-added model rat were demonstrated. Firmicutes as the most dominant phylum in antibiotic-free treatments and significantly decreased till 21.9%-68.5% in antibiotic-added treatments. Especially QHY-treated rats showed highest RA of Firmicutes (90.7%) and the amelioration of CAG using QHY attributed by beneficial bacterial enrichment, especially Ruminococcus, Lactobacillus and Bifidobacterium. In addition, alpha and beta diversity analysis also demonstrated the clear dispersion and aggregation that revealed the alteration and steady of bacterial community structures. In summary, QHY has potential application value in the treatment of CAG, which attributed to close relation with the modulatory of internal bacterial communities.
Chronic atrophic gastritis (CAG) was well-known related with multiple pathogenic factors and normally therapies comprised by western or Chinese medicines. Present study was design to identified the bacterial community characterized by 16S rRNA amplicon sequencing and determine the modulate affection of bacterial composition response western and Chinese medicine Qing huayin (QHY) as well as antibiotic on model rats. Result shown the overall structure alteration of bacterial appeared under medicine applied, antibiotic caused a marked depletion in bacterial diversity and richness, the enrichment of Firmicutes (85.1-90.7%) in antibiotic-free convert to Bacteroidetes (30.7-34.6%) in antibiotic-added model rat were demonstrated. Firmicutes was most dominant phylum and accounting for 85.1%-90.5% and significantly decreased till 21.9%-68.5% in antibiotic-added treatments. Especially QHY-treated show highest RA of Firmicutes (90.5%) and the amelioration of CAG using QHY attributed by beneficial bacterial enrichment, especially Ruminococcus, Lactobacillus and Bifidobacterium. In addition, alpha and beta diversity analysis also demonstrated the clear dispersion and aggregation that revealed the alteration and steady of bacterial community structures. In summary, QHY has potential application value in the treatment of CAG which attributed to close relation with the modulatory of internal bacterial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.