p21-activated kinases (PAKs) regulate many cellular processes, including cytoskeletal rearrangement and cell migration. In this study, we report a direct and specific interaction of PAK1 with a 22-kD Ca2+-binding protein, CIB1, which results in PAK1 activation both in vitro and in vivo. CIB1 binds to PAK1 within discrete regions surrounding the inhibitory switch domain in a calcium-dependent manner, providing a potential mechanism of CIB1-induced PAK1 activation. CIB1 overexpression significantly decreases cell migration on fibronectin as a result of a PAK1-and LIM kinase–dependent increase in cofilin phosphorylation. Conversely, the RNA interference–mediated depletion of CIB1 increases cell migration and reduces normal adhesion-induced PAK1 activation and cofilin phosphorylation. Together, these results demonstrate that endogenous CIB1 is required for regulated adhesion-induced PAK1 activation and preferentially induces a PAK1-dependent pathway that can negatively regulate cell migration. These results point to CIB1 as a key regulator of PAK1 activation and signaling.
ISG15 is a ubiquitin-like protein that is induced by interferon and microbial challenge. Ubiquitin-like proteins are covalently conjugated to cellular proteins and may intersect the ubiquitin-proteasome system via common substrates or reciprocal regulation. To investigate the relationship between ISG15 conjugation and proteasome function, we treated interferon-induced cells with proteasome inhibitors. Surprisingly, inhibition of proteasomal, but not lysosomal, proteases dramatically enhanced the level of ISG15 conjugates. The stimulation of ISG15 conjugates occurred rapidly in the absence of protein synthesis and was most dramatic in the cytoskeletal protein fraction. Inhibition of ISG15 conjugation by ATP depletion abrogated the proteasome inhibitor-dependent increase in ISG15 conjugates, suggesting that the effect was mediated by de novo conjugation, rather than protection from proteasomal degradation or inhibition of ISG15 deconjugating activity. The increase in ISG15 conjugates did not occur through a stabilization of the ISG15 E1 enzyme, UBE1L. Furthermore, simultaneous modification of proteins by both ISG15 and ubiquitin did not account for the proteasome inhibitor-dependent increase in ISG15 conjugates. These findings provide the first evidence for a link between ISG15 conjugation and proteasome function and support a model in which proteins destined for ISG15 conjugation are proteasomeregulated. Ubiquitin (ub)1 is the most highly conserved protein among eucaryotes and functions to post-translationally modify cellular proteins by covalent conjugation. Ub conjugation is carried out by the concerted activities of E1 (ub activation), E2 (ub conjugation), and E3 (ub ligase) enzymes in an ATP-dependent process (1). Sequential transfer of ub-thiol ester intermediates between ubiquitin-conjugating enzymes results in isopeptide bond formation between the ⑀-amino group of a substrate lysine residue and the carboxyl-terminal glycine of ub. The conjugated ub substrate can be targeted for further ubiquitylation in which polyubiquitin chains linked through lysine 48 are formed. Importantly, ubiquitylation is reversible, as ub can be removed from conjugates through the action of deconjugating enzymes (DUBs) (2). DUBs share highly conserved catalytic domains but exhibit great sequence diversity outside of these regions; the heterogeneity of these noncatalytic domains is thought to reflect substrate-specific activity. Thus, ubiquitin conjugation is a dynamic balance between conjugation and deconjugation. In the best characterized outcome of ubiquitylation, proteins conjugated to poly-ub chains of four or greater are targeted for degradation in the 26 S proteasome (3). The proteasome is composed of two 19 S "cap" complexes that bind, de-ubiquitylate, and unfold substrates to facilitate entry into the barrel-shaped 20 S proteolytic core. Identification of the protease activities of the proteasome as chymotrypsin-like, trypsin-like, and caspase-like permitted the development of peptide inhibitors of proteasome function. Stu...
The midbrain ventrolateral periaqueductal gray (VL-PAG) is a key component that mediates pain modulation. Although spinal cord glial cells appear to play an important role in chronic pain development, the precise mechanisms involving descending facilitation pathways from the PAG following nerve injury are poorly understood. This study shows that cellular events that occur during glial activation in the VL-PAG may promote descending facilitation from the PAG during neuropathic pain. Chronic constriction nerve injury (CCI) was induced by ligature construction of the sciatic nerve in male Sprague-Dawley rats. Behavioral responses to noxious mechanical (paw withdrawal threshold; PWT) and thermal (paw withdrawal latency; PWL) stimuli were evaluated. After CCI, immunohistochemical and Western blot analysis of microglia and astrocytes in the VL-PAG showed morphological and quantitative changes indicative of activation in microglia and astrocytes. Intra-VL-PAG injection of microglial or astrocytic inhibitors attenuated PWT and PWL at days 7 and 14, respectively, following CCI. We also evaluated the effects of intra-VL-PAG administration of the phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) inhibitor SB 203580 at day 7 after CCI. This treatment abolished microglial activation and produced a significant time-dependent attenuation of PWT and PWL. Western blot analysis showed localized expression of p-p38 in the VL-PAG after CCI. P-p38 was expressed in labeled microglia of the VL-PAG but was not present in astrocytes and neurons on day 7 after CCI. These results demonstrate that CCI-induced neuropathic pain is associated with glial activation in the VL-PAG, which likely participates in descending pain facilitation through the p38 MAPK signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.