An electrohydrostatic actuator (EHA) is a basic mechanical/hydraulic system with deficiencies including significant nonlinearity and parametric uncertainties. In line with the challenges of designing a high-precision control strategy, an adaptive damping variable sliding mode controller is established, which extends our previous work on EHA control. The proposed controller integrates variable-damping sliding mode control, parametric adaptation, and an extended state observer. The parametric uncertainties are effectively captured and compensated by employing an adaptive control law, while system uncertainties are reduced, and disturbances are estimated and compensated with a fast and stable response. We evaluated the proposed control strategy on a variety of position tracking tasks. The experimental results demonstrate that our controller significantly outperforms the widely used methods in overshoot suppression, settling time, and tracking accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.