Prion protein (PrP) is able to bind with tubulin and to interfere with the formation of microtubule. To investigate the influence of accumulation of cytosolic PrP in cytoplasm on microtubule, plasmid pcDNA3.1-PrP23-230 expressing human PrP23-230 was introduced into HeLa cells. Immunoprecipitation assays identified the molecular interaction between cytosolic PrP and cellular tubulin. Confocal microscopy showed the co-localization of the expressed cytosolic PrP with tubulin in cytoplasm. Immunofluorescent assays of tubulin illustrated remarkable disruption of microtubular structures in the cells accumulated with cytosolic PrP. Meanwhile, the expressed cytosolic PrP significantly reduced cell viability and induced cell apoptosis. The amounts of microtubule protein in the cells expressing cytosolic PrP were decreased. Moreover, the levels of endogenous tubulin in the brain tissues of scrapie-infected hamsters were significantly lower than that of normal one. It highlights a close linkage between disruption of microtubule framework and cell death caused by abnormal presence of cellular PrP in cytoplasm. The association of apoptosis with microtubule-disrupting activity caused by cytosolic PrP may further provide insight into the unresolved biological function of PrP in the neurons.
Nerve growth factor (NGF), a member of the neurotrophin family, is essential for the development and maintenance of sensory neurons and for the formation of central pain circuitry. The current study was designed to evaluate the expression of NGF in the brain of rats with spared nerve injury (SNI), using immunohistochemical technique. The results showed that the level of NGF in the Red nucleus (RN) of SNI rats was apparently higher than that of sham-operated rats. To further study the effect of NGF in the development of neuropathic pain, different doses of anti-NGF antibody (20, 2.0 and 0.2 microg/ml) were microinjected into the RN contralateral to the nerve injury side of SNI rats. The data suggested that the higher doses of anti-NGF antibody (20 and 2.0 microg/ml) significantly attenuated the mechanical allodynia of neuropathic rats, while the 0.2 microg/ml antibody showed no analgesic effect. These results suggest that the NGF of RN is involved in the development of neuropathic allodynia in SNI rats.
Intracellular pH and redox states are critical for multiple processes and partly determine cell behavior. Here, we developed a genetically encoded dual-function probe, named p
H
and redox-sensitive fluorescent protein (pHaROS), for simultaneous real-time detection of changes in redox potential and pH in living cells. pHaROS consists of the Arabidopsis flavin mononucleotide-binding fluorescent protein iLOV and an mKATE variant, mBeRFP. Using pHaROS in Saccharomyces cerevisiae cells, we confirmed that H2O2 raises the overall redox potential of the cell and found that this increase is accompanied by a decrease in cytosolic pH. Furthermore, we observed spatiotemporal pH and redox homeostasis within the nucleus at various stages of the cell cycle in budding yeast (Saccharomyces cerevisiae) during cellular development and responses to oxidative stress. Importantly, we could tailor pHaROS to specific applications, including measurements in different organelles and cell types and the GSH/GSSG ratio, highlighting pHaROS's high flexibility and versatility. In summary, we have developed pHaROS as a dual-function probe that can be used for simultaneously measuring cellular pH and redox potential, representing a very promising tool for determining the cross-talk between intracellular redox- and pH-signaling processes in yeast and mammalian U87 cell.
BackgroundThe human papillomavirus (HPV) E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa) substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells.ResultsCAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA) showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2.ConclusionsThese results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.