Fixed-length embeddings of words are very useful for a variety of tasks in speech and language processing. Here we systematically explore two methods of computing fixed-length embeddings for variable-length sequences. We evaluate their susceptibility to phonetic and speaker-specific variability on English, a high resource language, and Xitsonga, a low resource language, using two evaluation metrics: ABX word discrimination and ROC-AUC on same-different phoneme n-grams. We show that a simple downsampling method supplemented with length information can be competitive with the variable-length input feature representation on both evaluations. Recurrent autoencoders trained without supervision can yield even better results at the expense of increased computational complexity.
Speech technology plays an important role in our everyday life. Among others, speech is used for human-computer interaction, for instance for information retrieval and on-line shopping. In the case of an unwritten language, however, speech technology is unfortunately difficult to create, because it cannot be created by the standard combination of pre-trained speechto-text and text-to-speech subsystems. The research presented in this paper takes the first steps towards speech technology for unwritten languages. Specifically, the aim of this work was 1) to learn speech-to-meaning representations without using text as an intermediate representation, and 2) to test the sufficiency of the learned representations to regenerate speech or translated text, or to retrieve images that depict the meaning of an utterance in an unwritten language. The results suggest that building systems that go directly from speech-to-meaning and from meaning-tospeech, bypassing the need for text, is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.