Fixed-length embeddings of words are very useful for a variety of tasks in speech and language processing. Here we systematically explore two methods of computing fixed-length embeddings for variable-length sequences. We evaluate their susceptibility to phonetic and speaker-specific variability on English, a high resource language, and Xitsonga, a low resource language, using two evaluation metrics: ABX word discrimination and ROC-AUC on same-different phoneme n-grams. We show that a simple downsampling method supplemented with length information can be competitive with the variable-length input feature representation on both evaluations. Recurrent autoencoders trained without supervision can yield even better results at the expense of increased computational complexity.
Producing diverse paraphrases of a sentence is a challenging task. Natural paraphrase corpora are scarce and limited, while existing large-scale resources are automatically generated via back-translation and rely on beam search, which tends to lack diversity. We describe PARABANK 2, a new resource that contains multiple diverse sentential paraphrases, produced from a bilingual corpus using negative constraints, inference sampling, and clustering. We show that PARABANK 2 significantly surpasses prior work in both lexical and syntactic diversity while being meaningpreserving, as measured by human judgments and standardized metrics. Further, we illustrate how such paraphrastic resources may be used to refine contextualized encoders, leading to improvements in downstream tasks.
Statutory reasoning is the task of determining whether a legal statute, stated in natural language, applies to the text description of a case. Prior work introduced a resource that approached statutory reasoning as a monolithic textual entailment problem, with neural baselines performing nearly at-chance. To address this challenge, we decompose statutory reasoning into four types of language-understanding challenge problems, through the introduction of concepts and structure found in Prolog programs. Augmenting an existing benchmark, we provide annotations for the four tasks, and baselines for three of them. Models for statutory reasoning are shown to benefit from the additional structure, improving on prior baselines. Further, the decomposition into subtasks facilitates finer-grained model diagnostics and clearer incremental progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.