Self-attention networks have received increasing research attention. By default, the hidden states of each word are hierarchically calculated by attending to all words in the sentence, which assembles global information. However, several studies pointed out that taking all signals into account may lead to overlooking neighboring information (e.g. phrase pattern). To address this argument, we propose a hybrid attention mechanism to dynamically leverage both of the local and global information. Specifically, our approach uses a gating scalar for integrating both sources of the information, which is also convenient for quantifying their contributions. Experiments on various neural machine translation tasks demonstrate the effectiveness of the proposed method. The extensive analyses verify that the two types of contexts are complementary to each other, and our method gives highly effective improvements in their integration.
Multi-source remote sensing imagery has become widely accessible owing to the development of data acquisition systems. In this paper, we address the challenging task of the semantic segmentation of buildings via multi-source remote sensing imagery with different spatial resolutions. Unlike previous works that mainly focused on optimizing the segmentation model, which did not enable the severe problems caused by the unaligned resolution between the training and testing data to be fundamentally solved, we propose to integrate SR techniques with the existing framework to enhance the segmentation performance. The feasibility of the proposed method was evaluated by utilizing representative multi-source study materials: high-resolution (HR) aerial and low-resolution (LR) panchromatic satellite imagery as the training and testing data, respectively. Instead of directly conducting building segmentation from the LR imagery by using the model trained using the HR imagery, the deep learning-based super-resolution (SR) model was first adopted to super-resolved LR imagery into SR space, which could mitigate the influence of the difference in resolution between the training and testing data. The experimental results obtained from the test area in Tokyo, Japan, demonstrate that the proposed SR-integrated method significantly outperforms that without SR, improving the Jaccard index and kappa by approximately 19.01% and 19.10%, respectively. The results confirmed that the proposed method is a viable tool for building semantic segmentation, especially when the resolution is unaligned.
BACKGROUND: The risk factors of hypertensive disorders in pregnancy (HDP) could be summarized into three categories: clinical epidemiological factors, hemodynamic factors and biochemical factors. OBJECTIVE: To establish models for early prediction and intervention of HDP. METHODS: This study used the three types of risk factors and support vector machine (SVM) to establish prediction models of HDP at different gestational weeks. RESULTS: The average accuracy of the model was gradually increased when the pregnancy progressed, especially in the late pregnancy 28–34 weeks and 35 weeks, it reached more than 92%. CONCLUSION: Multi-risk factors combined with dynamic gestational weeks’ prediction of HDP based on machine learning was superior to static and single-class conventional prediction methods. Multiple continuous tests could be performed from early pregnancy to late pregnancy.
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods only consider a few number of previous sentences. How to make use of the whole document as global contexts is still a challenge. To address this issue, we hypothesize that a document can be represented as a graph that connects relevant contexts regardless of their distances. We employ several types of relations, including adjacency, syntactic dependency, lexical consistency, and coreference, to construct the document graph. Then, we incorporate both source and target graphs into the conventional Transformer architecture with graph convolutional networks. Experiments on various NMT benchmarks, including IWSLT English-French, Chinese-English, WMT English-German and Opensubtitle English-Russian, demonstrate that using document graphs can significantly improve the translation quality. Extensive analysis verifies that the document graph is beneficial for capturing discourse phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.