Resveratrol is a naturally occurring phenol that is generated by plant species following injury or attack by bacterial and fungal pathogens. This compound was first described as the French Paradox in 1992. Later in 2003, resveratrol was reported to activate sirtuins in yeast cells. Recent experimental studies have found that resveratrol offers a variety of benefits that include both anticarcinogenic and anti-inflammatory effects in addition to the ability to reverse obesity, attenuate hyperglycemia and hyperinsulinemia, protect heart and endothelial function, and increase the life span. Multiple molecular targets are associated with the cardioprotective capabilities of resveratrol, and therefore, resveratrol has potential for a wide range of new therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, cardiac failure, and inflammatory alterations during aging. Expectations for application in human patients, however, suffer from a lack of sufficient clinical evidence in support of these beneficial effects. This article reviews recently reported basic research results that describe the beneficial effects of resveratrol in an attempt to condense the evidence observed in clinical trials and provide support for the future development of novel clinical therapeutics in patients with cardiovascular diseases.
Complete atrioventricular block (CAVB) is a life-threatening arrhythmia. A small animal model of chronic CAVB that properly reflects clinical indices of bradycardia would accelerate the understanding of disease progression and pathophysiology, and the development of therapeutic strategies. We sought to develop a surgical model of CAVB in adult rats, which could recapitulate structural remodeling and arrhythmogenicity expected in chronic CAVB. Upon right thoracotomy, we delivered electrosurgical energy subepicardially via a thin needle into the atrioventricular node (AVN) region of adult rats to create complete AV block. The chronic CAVB animals developed dilated and hypertrophied ventricles with preserved systolic functions due to compensatory hemodynamic remodeling. Ventricular tachyarrhythmias, which are difficult to induce in the healthy rodent heart, could be induced upon programmed electrical stimulation in chronic CAVB rats and worsened when combined with β-adrenergic stimulation. Focal somatic gene transfer of TBX18 to the left ventricular apex in the CAVB rats resulted in ectopic ventricular beats within days, achieving a de novo ventricular rate faster than the slow atrioventricular (AV) junctional escape rhythm observed in control CAVB animals. The model offers new opportunities to test therapeutic approaches to treat chronic and severe CAVB which have previously only been testable in large animal models.
Colorectal cancer is one of the life-threatening ailments causing high mortality and morbidity worldwide. Despite the innovation in medical genetics, the prognosis for metastatic colorectal cancer in patients remains unsatisfactory. Recently, lichens have attracted the attention of researchers in the search for targets to fight against cancer. Lichens are considered mines of thousands of metabolites. Researchers have reported that lichen-derived metabolites demonstrated biological effects, such as anticancer, antiviral, anti-inflammatory, antibacterial, analgesic, antipyretic, antiproliferative, and cytotoxic, on various cell lines. However, the exploration of the biological activities of lichens’ metabolites is limited. Thus, the main objective of our study was to evaluate the anticancer effect of secondary metabolites isolated from lichen (Usnea barbata 2017-KL-10) on the human colorectal cancer cell line HCT116. In this study, 2OCAA exhibited concentration-dependent anticancer activities by suppressing antiapoptotic genes, such as MCL-1, and inducing apoptotic genes, such as BAX, TP53, and CDKN1A(p21). Moreover, 2OCAA inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that 2OCAA is a better therapeutic candidate for colorectal cancer.
Two new depsidones, himantormiones A and B (1 and 2) were isolated and identified from the Antarctic lichen, Himantormia lugubris (Parmeliaceae), with seven known compounds (3 -9). The structures of two new compounds (1 and 2) were determined by means of spectroscopic analyses, including 1D and 2D NMR and HR-MS. The isolated compounds were tested for antimicrobial and cytotoxic activities, where himantormione B (2) exhibited inhibitory effect against Staphylococcus aureus with the IC 50 value of 7.01 � 0.85 mM. Compound 2 also exhibited strong cytotoxic activity against HCT116 cells (colon cancer) with the EC 50 value of 1.11 � 0.85 μM, where that of the positive control, 5-fluouracil, was 9.4 � 1.90 μM.
We introduce an integrative process-based crop model for garlic (Allium sativum). Building on our previous model that simulated key phenological, morphological, and physiological features of a garlic plant, the new garlic model provides comprehensive and integrative estimations of biomass accumulation and yield formation under diverse environmental conditions. This model also showcases an application of Cropbox to develop a comprehensive crop model. Cropbox is a crop modeling framework featuring declarative modeling language and a unified simulation interface for building and improving crop models. Using Cropbox, we first evaluated the model performance against three datasets with an emphasis on biomass and yield measured under different environmental conditions and growing seasons. We then applied the model to simulate optimal planting dates under future climate conditions for assessing climate adaptation strategies between two contrasting locations in South Korea: the current growing region (Gosan, Jeju) and an unfavorable cold winter region (Chuncheon, Gangwon). The model simulated the growth and development of a southern-type cultivar (Namdo, ND) reasonably well. Under Representative Concentration Pathway (RCP) scenarios, an overall delay in optimal planting date from a week to a month, and a slight increase in potential yield were expected in Gosan. Expansion of growing region to northern area including Chuncheon was expected due to mild winter temperatures in the future and may allow ND cultivar production in more regions. The predicted optimal planting date in the new region was similar to the current growing region that favors early fall planting. Our new integrative garlic model provides mechanistic, process-based crop responses to environmental cues and can be useful for assessing climate impacts and identifying crop specific climate adaptation strategies for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.