In electrolytic production of zinc, the iron levels in the solutions are controlled by precipitation of jarosite or goethite. These precipitates also co-precipitate unrecovered valuable metals (Zn, Pb, Cu, Ag) as well as elements of concern (As, Cd, Hg). After stabilization, the residues are traditionally landfilled. This work investigates pyrometallurgical treatment of jarosite residue to convert the material into reusable clean slag and to recover the valuable metals within the residue. The pyrometallurgical treatment is divided into two functional steps. First, the material is melted in an oxidizing atmosphere, after which the oxide melt is reduced to produce an inert, clean slag. Then, a liquid metal or speiss phase collects the valuable metals, such as silver. The aim was to examine the optimal process conditions for reaching the target values for remaining metals in the slag; Pb < 0.03 wt %, Zn < 1 wt %. As a conclusion, the limiting factor in sulfur, lead, and zinc removal is the contact between the oxidizing or reducing gas and the molten sample. The mass transfer and volatile metals removal were significantly improved with a gas lance installation. The improved gas-liquid interaction enabled the first steps of gas flow rate optimization and ensured the sufficiently low end-concentrations of the aforementioned elements.
Iron containing leach residues like jarosite and goethite from electrolytic zinc production contain many valuable metals and harmful substances. These metals and substances should be removed in order to obtain an acceptable, stable and reusable product, and maximize economic feasibility as well as minimize environmental footprint. In this work, the processing of jarosite leach residue was studied in laboratory scale experiments under oxidizing and reducing conditions at high temperatures. First, the pretreated material was melted and oxidized to produce a melt of metal oxides. Second, the oxide melt was reduced in CO-CO2 atmosphere. Target after the reduction step was to obtain a clean slag and a liquid metal or speiss phase that collects the valuable metals, such as silver. The kinetics of the thermal processing were studied for determining optimal times and conditions for the aforementioned process steps. The preliminary results show that the process is thermodynamically feasible, and the desired phases can be obtained in the experimental conditions investigated.
An innovative lead recycling process from scrap lead-acid battery paste is presented. The novelty in the process is avoiding SO2 generation and emission by using reductive sulfur-fixing technique. Ironbearing secondary wastes produced from metallurgical industry were utilized as sulfur-fixing agent to capture sulfur in the form of FeS (s) instead of generation of SO2 (g). Molten Na2CO3 salt was added to the smelting system to speed the reactions and improve valuable metals' recovery and sulfur-fixation efficiency. Furthermore, this process can simultaneously co-treat various lead and iron-bearing wastes. At the same time, some precious metals, such as Au and Ag, contained in iron-bearing wastes can be recovered. The feasibility and reliability of this process was investigated thermodynamically and experimentally with the help of HSC 9.0 database and XRD and SEM-EDS analysis. A possible reaction mechanism and path in PbSO4-Fe2O3-Na2CO3-C smelting system was also clarified.
The suitability of a non-fossil reductant in high-temperature treatment of a zinc leach residue was studied in laboratory-scale experiments. The pyrometallurgical experiments carried out at temperatures of 1200–1350 °C consisted of melting the residue under an oxidizing atmosphere to produce an intermediate, desulfurized slag, which was further cleaned of metals such as Zn, Pb, Cu, and Ag, using renewable biochar as a reductant. The aim was to recover valuable metals and produce a clean, stable slag for use as construction material, for example. The first experiments indicated that biochar is a viable alternative to fossil-based metallurgical coke. The capabilities of biochar as a reductant were studied in more detail after optimizing the processing temperature at 1300 °C and modifying the experimental arrangement by adding rapid quenching of the sample (to a solid state in less than 5 s) to the procedure. Modifying the slag viscosity by adding 5–10 wt % MgO was found to enhance the slag cleaning significantly. With an addition of 10 wt % MgO, the target Zn concentration in slag (Zn < 1 wt %) was reached after as little as 10 min of reduction, and the Pb concentration was also decreased relatively close to the target value (Pb < 0.03 wt %). With an addition of 0–5 wt % MgO, the target Zn and Pb levels were not reached within 10 min, but with longer treatment times of 30–60 min, 5 wt % of MgO was enough to decrease the Zn content in slag sufficiently. The lowest Pb concentration achieved with an addition of 5 wt % MgO was 0.09 wt % after a 60 min reduction time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.