We use Global Positioning System (GPS) velocity data to model eastern Asian plate kinematics. Out of 15 stations in Korea, Russia, China, and Japan studied here, three sites considered to be on the stable interior of the hypothetical Amurian Plate showed eastward velocities as fast as ∼9–10 mm/yr with respect to the Eurasian Plate. They were stationary relative to each other to within 1 mm/yr, and these velocity vectors together with those of a few additional sites were used to accurately determine the instantaneous angular velocity (Euler) vector of the Amurian Plate. The predicted movement between the Amurian and the North American Plates is consistent with slip vectors along the eastern margin of the Japan Sea and Sakhalin, which reduces the necessity to postulate the existence of the Okhotsk Plate. The Euler vector of the Amurian Plate predicts left‐lateral movement along its boundary with the south China block, consistent with neotectonic estimates of the displacement at the Qinling fault, possibly the southern boundary of the Amurian Plate. The Amurian Plate offers a platform for models of interseismic strain buildup in southwest Japan by the Philippine Sea Plate subduction at the Nankai Trough. Slip vectors along the Baikal rift, the boundary between the Amurian and the Eurasian Plates, are largely inconsistent with the GPS‐based Euler vector, suggesting an intrinsic difficulty in using earthquake slip vectors in continental rift zones for such studies.
Using GPS observations, we have detected an aseismic slip event on the intraplate Dedana Fault that was triggered by the Iwate‐Miyagi Nairiku earthquake (Mw6.8, 13 Jun 2008 UTC) on a nearby but separate fault. The observations cannot be satisfactorily explained in terms of either viscoelastic relaxation or poroelastic rebound, and we cannot explain the observed displacement time series without presuming that aseismic slip occurred on the Dedana Fault. This slip was likely triggered by the mainshock stress change. The detection of future such aseismic slip events on intraplate faults is likely to require denser geodetic networks than are currently in operation, but is important for fully characterizing the seismic hazard associated with intraplate earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.