The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses’ receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.
The Baculovirus Expression Vector System (BEVS), a mature foreign protein expression platform, has been available for decades, and has been effectively used in vaccine production, gene therapy, and a host of other applications. To date, eleven BEVS-derived products have been approved for use, including four human vaccines [Cervarix against cervical cancer caused by human papillomavirus (HPV), Flublok and Flublok Quadrivalent against seasonal influenza, Nuvaxovid/Covovax against COVID-19], two human therapeutics [Provenge against prostate cancer and Glybera against hereditary lipoprotein lipase deficiency (LPLD)] and five veterinary vaccines (Porcilis Pesti, BAYOVAC CSF E2, Circumvent PCV, Ingelvac CircoFLEX and Porcilis PCV). The BEVS has many advantages, including high safety, ease of operation and adaptable for serum-free culture. It also produces properly folded proteins with correct post-translational modifications, and can accommodate multi-gene– or large gene insertions. However, there remain some challenges with this system, including unstable expression and reduced levels of protein glycosylation. As the demand for biotechnology increases, there has been a concomitant effort into optimizing yield, stability and protein glycosylation through genetic engineering and the manipulation of baculovirus vector and host cells. In this review, we summarize the strategies and technological advances of BEVS in recent years and explore how this will be used to inform the further development and application of this system.
Influenza A viruses pose a significant threat globally each year, underscoring the need for a vaccine- or antiviral-based broad-protection strategy. Here, we describe a chimeric monoclonal antibody, C12H5, that offers neutralization against seasonal and pandemic H1N1 viruses, and cross-protection against some H5N1 viruses. Notably, C12H5 mAb offers broad neutralizing activity against H1N1 and H5N1 viruses by controlling virus entry and egress, and offers protection against H1N1 and H5N1 viral challenge in vivo. Through structural analyses, we show that C12H5 engages hemagglutinin (HA), the major surface glycoprotein on influenza, at a distinct epitope overlapping the receptor binding site and covering the 140-loop. We identified eight highly conserved (~90%) residues that are essential for broad H1N1 recognition, with evidence of tolerance for Asp or Glu at position 190; this site is a molecular determinant for human or avian host-specific recognition and this tolerance endows C12H5 with cross-neutralization potential. Our results could benefit the development of antiviral drugs and the design of broad-protection influenza vaccines.
The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the still ravaging COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses’ receptor binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Significantly, both antibodies confer good mutation resistance to the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics, and can also inform the design of pan-sarbecovirus vaccines.
Varicella–zoster virus (VZV) is the causative agent of varicella and herpes zoster (HZ) and can pose a significant challenge to human health globally. The initial VZV infection—more common in children—causes a self-limiting chicken pox. However, in later life, the latent VZV can become reactivated in these patients, causing HZ and postherpetic neuralgia (PHN), a serious and painful complication. VZV glycoprotein E (gE) has been developed into a licensed subunit vaccine against HZ (Shingrix). However, its efficacy relies on the concomitant delivery of a robust adjuvant (AS01B). Here, we sought to create a new immunogen for vaccine design by displaying the VZV–gE on the baculovirus surface (Bac–gE). Correct localization and display of gE on the engineered baculovirus was verified by flow cytometry and immune electron microscopy. We show that Bac–gE provides excellent antigenicity against VZV and induces not only stronger gE-specific CD4+ and CD8+ T cell responses but also higher levels of VZV–specific neutralizing antibodies as compared with other vaccine strategies in mice. Collectively, we show that the baculovirus display of VZV–gE confers ideal humoral and cellular immune responses required for HZ vaccine development, paving the way for a baculovirus-based vaccine design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.