Ac ompetitive complexation strategy has been developed to construct an ovel electrocatalyst with Zn-Co atomic pairs coordinated on Nd oped carbon support (Zn/ CoN-C). Sucha rchitecture offers enhanced binding ability of O 2 ,s ignificantly elongates the O À Ol ength (from 1.23 to 1.42 ), and thus facilitates the cleavage of O À Ob ond, showing at heoretical overpotential of 0.335 Vd uring ORR process.A saresult, the Zn/CoN-C catalyst exhibits outstanding ORR performance in both alkaline and acid conditions with ah alf-wave potential of 0.861 and 0.796 Vr espectively. The in situ XANES analysis suggests Co as the active center during the ORR. The assembled zinc-air battery with Zn/CoN-Ca sc athode catalyst presents am aximum power density of 230 mW cm À2 along with excellent operation durability.T he excellent catalytic activity in acid is also verified by H 2 /O 2 fuel cell tests (peak power density of 705 mW cm À2 ).
capacity of the modified oxide reaches 320 mAh g -1 in the initial cycle, 94.5% of which remains after 100 cycles. More importantly, the average discharge potential drops only by 136 mV in this process. Our findings illustrate the importance of inactivating the surface oxygen in suppressing the cation mixing in the bulk, providing an effective strategy for designing high-performance Li-rich cathode materials.
Carbonate-based electrolytes demonstrate safe and stable electrochemical performance in lithium-sulfur batteries. However, only a few types of sulfur cathodes with low loadings can be employed and the underlying electrochemical mechanism of lithium-sulfur batteries with carbonate-based electrolytes is not well understood. Here, we employ in operando X-ray absorption near edge spectroscopy to shed light on a solid-phase lithium-sulfur reaction mechanism in carbonate electrolyte systems in which sulfur directly transfers to Li2S without the formation of linear polysulfides. Based on this, we demonstrate the cyclability of conventional cyclo-S8 based sulfur cathodes in carbonate-based electrolyte across a wide temperature range, from −20 °C to 55 °C. Remarkably, the developed sulfur cathode architecture has high sulfur content (>65 wt%) with an areal loading of 4.0 mg cm−2. This research demonstrates promising performance of lithium-sulfur pouch cells in a carbonate-based electrolyte, indicating potential application in the future.
The application of Li-S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li 2 S at the second discharge plateau around 2.1 V and harsh shuttling effects for high-S-loading cathodes. Herein, a cobalt-doped SnS 2 anchored on N-doped carbon nanotube (NCNT@Co-SnS 2 ) substrate is rationally designed as both a polysulfide shield to mitigate the shuttling effects and an electrocatalyst to improve the interconversion kinetics from polysulfides to Li 2 S. As a result, high-S-loading cathodes are demonstrated to achieve good cycling stability with high sulfur utilization. It is shown that Co-doping plays an important role in realizing high initial capacity and good capacity retention for Li-S batteries. The S/NCNT@Co-SnS 2 cell (3 mg cm −2 sulfur loading) delivers a high initial specific capacity of 1337.1 mA h g −1 (excluding the Co-SnS 2 capacity contribution) and 1004.3 mA h g −1 after 100 cycles at a current density of 1.3 mA cm −2 , while the counterpart cell (S/NCNT@SnS 2 ) only shows an initial capacity of 1074.7 and 843 mA h g −1 at the 100th cycle. The synergy effect of polysulfide confinement and catalyzed polysulfide conversion provides an effective strategy in improving the electrochemical performance for high-sulfur-loading Li-S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.