This paper provides a new approach that improves collaborative filtering results in recommendation systems. In particular, we aim to ensure the reliability of the data set collected which is to collect the cognition about the item similarity from the users. Hence, in this work, we collect the cognitive similarity of the user about similar movies. Besides, we introduce a three-layered architecture that consists of the network between the items (item layer), the network between the cognitive similarity of users (cognition layer) and the network between users occurring in their cognitive similarity (user layer). For instance, the similarity in the cognitive network can be extracted from a similarity measure on the item network. In order to evaluate our method, we conducted experiments in the movie domain. In addition, for better performance evaluation, we use the F-measure that is a combination of two criteria P r e c i s i o n and R e c a l l . Compared with the Pearson Correlation, our method more accurate and achieves improvement over the baseline 11.1% in the best case. The result shows that our method achieved consistent improvement of 1.8% to 3.2% for various neighborhood sizes in MAE calculation, and from 2.0% to 4.1% in RMSE calculation. This indicates that our method improves recommendation performance.
In this paper, we propose an interdisciplinary approach to (natural) disaster relief management. Our framework combines dynamic and static databases, which consist of social media and authoritative data of an afflicted region, respectively, to model rescue demand during a disaster situation. Using Global Particle Swarm Optimization and Mixed-Integer Linear Programming, we then determine the optimal amount and locations of temporal rescue centers. Furthermore, our disaster relief system identifies an efficient distribution of supplies between hospitals and rescue centers and rescue demand points. By leveraging the temporal dimension of the social media data, our framework manages to iteratively optimize the disaster relief distribution.
Disasters pose a serious threat to people' lives and urban environment, affecting the sustainable development of society. Then it's crucial to quickly develop an efficient rescue plan for the disaster area. However, disaster rescue is rather difficult due to the requirement to develop the optimal rescue plan as quickly as possible according to the information of trapped people and rescue teams, and the amount of information will continue to increase as the rescue proceeds. At present, most of the rescue plans are manually made based on previous rescue experience. But obviously these plans might be the not optimal one. Considering the real-time location data of trapped people, this paper develops a Mixed Integer Non-linear Programming (MINLP) model to find the highest efficient rescue plan To solve the model accurately and efficiently, a bi-level decomposition (BLD) algorithm is presented to iteratively solve a discretized Mixed Integer Linear Programming (MILP) model and its nonconvex Non-linear Programming (NLP) model until a converged solution is obtained. In addition, since more trapped people could be found over time, the built rescue units should also be considered when making a rescue plan for a new stage. To further improve the solving efficiency, an accelerated bi-level decomposition (ABLD) algorithm is also proposed. Finally, a real-world disaster rescue is given to validate the superiority of the proposed ABLD algorithm relative to particle swarm optimization (PSO) algorithm and BLD algorithm. setting, project design, project selection, organization implementation, and feedback modification (Lei, Wu, Xu, & Fujita, 2017). The process can be simplified into three stages according to the promotion of rescue
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.