Objectives To demonstrate the feasibility of an automated, non-invasive approach to estimate bone marrow (BM) infiltration of multiple myeloma (MM) by dual-energy computed tomography (DECT) after virtual non-calcium (VNCa) post-processing. Methods Individuals with MM and monoclonal gammopathy of unknown significance (MGUS) with concurrent DECT and BM biopsy between May 2018 and July 2020 were included in this retrospective observational study. Two pathologists and three radiologists reported BM infiltration and presence of osteolytic bone lesions, respectively. Bone mineral density (BMD) was quantified CT-based by a CE-certified software. Automated spine segmentation was implemented by a pre-trained convolutional neural network. The non-fatty portion of BM was defined as voxels > 0 HU in VNCa. For statistical assessment, multivariate regression and receiver operating characteristic (ROC) were conducted. Results Thirty-five patients (mean age 65 ± 12 years; 18 female) were evaluated. The non-fatty portion of BM significantly predicted BM infiltration after adjusting for the covariable BMD (p = 0.007, r = 0.46). A non-fatty portion of BM > 0.93% could anticipate osteolytic lesions and the clinical diagnosis of MM with an area under the ROC curve of 0.70 [0.49–0.90] and 0.71 [0.54–0.89], respectively. Our approach identified MM-patients without osteolytic lesions on conventional CT with a sensitivity and specificity of 0.63 and 0.71, respectively. Conclusions Automated, AI-supported attenuation assessment of the spine in DECT VNCa is feasible to predict BM infiltration in MM. Further, the proposed method might allow for pre-selecting patients with higher pre-test probability of osteolytic bone lesions and support the clinical diagnosis of MM without pathognomonic lesions on conventional CT. Key Points • The retrospective study provides an automated approach for quantification of the non-fatty portion of bone marrow, based on AI-supported spine segmentation and virtual non-calcium dual-energy CT data. • An increasing non-fatty portion of bone marrow is associated with a higher infiltration determined by invasive biopsy after adjusting for bone mineral density as a control variable (p = 0.007, r = 0.46). • The non-fatty portion of bone marrow might support the clinical diagnosis of multiple myeloma when conventional CT images are negative (sensitivity 0.63, specificity 0.71).
This study provides a solid rationale for the stratification of lung adenocarcinoma patients according to the functional ERCC1- and mutational TP53 status, where functionally ERCC1-incompetent patients could benefit from sequential cisplatin and etoposide chemotherapy. Mol Cancer Res; 14(11); 1110-23. ©2016 AACR.
Objectives Dual-energy computed tomography (DECT)–derived quantification of iodine concentration (IC) is increasingly used in oncologic imaging to characterize lesions and evaluate treatment response. However, only limited data are available on intraindividual consistency of IC and its variation. This study investigates the longitudinal reproducibility of IC in organs, vessels, and lymph nodes in a large cohort of healthy patients who underwent repetitive DECT imaging. Materials and Methods A total of 159 patients, who underwent a total of 469 repetitive (range, 2–4), clinically indicated portal-venous phase DECT examinations of the chest and abdomen, were retrospectively included. At time of imaging, macroscopic tumor burden was excluded by follow-up imaging (≥3 months). Iodine concentration was measured region of interest-based (N = 43) in parenchymatous organs, vessels, lymph nodes, and connective tissue. Normalization of IC to the aorta and to the trigger delay as obtained from bolus tracking was performed. For statistical analysis, intraclass correlation coefficient and modified variation coefficient (MVC) were used to assess intraindividual agreement of IC and its variation between different time points, respectively. Furthermore, t tests and analysis of variance with Tukey-Kramer post hoc test were used. Results The mean intraclass correlation coefficient over all regions of interest was good to excellent (0.642–0.936), irrespective of application of normalization or the normalization technique. Overall, MVC ranged from 1.8% to 25.4%, with significantly lower MVC in data normalized to the aorta (5.8% [1.8%–15.8%]) in comparison with the MVC of not normalized data and data normalized to the trigger delay (P < 0.01 and P = 0.04, respectively). Conclusions Our study confirms intraindividual, longitudinal variation of DECT-derived IC, which varies among vessels, lymph nodes, organs, and connective tissue, following different perfusion characteristics; normalizing to the aorta seems to improve reproducibility when using a constant contrast media injection protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.