Helicobacter suis, a bacterial species naturally hosted by pigs, can colonize the human stomach in the context of gastric diseases such as gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Because H. suis has been successfully isolated from pigs, but not from humans, evidence linking human H. suis infection to gastric diseases has remained incomplete. In this study, we successfully in vitro cultured H. suis directly from human stomachs. Unlike Helicobacter pylori, the viability of H. suis decreases significantly on neutral pH; therefore, we achieved this using a low-pH medium for transport of gastric biopsies. Ultimately, we isolated H. suis from three patients with gastric diseases, including gastric MALT lymphoma. Successful eradication of H. suis yielded significant improvements in endoscopic and histopathological findings. Oral infection of mice with H. suis clinical isolates elicited gastric and systemic inflammatory responses; in addition, progression of gastric mucosal metaplasia was observed 4 mo postinfection. Because H. suis could be isolated from the stomachs of infected mice, our findings satisfied Koch’s postulates. Although further prospective clinical studies are needed, H. suis, like H. pylori, is likely a gastric pathogen in humans. Furthermore, comparative genomic analysis of H. suis using complete genomes of clinical isolates revealed that the genome of each H. suis isolate contained highly plastic genomic regions encoding putative strain-specific virulence factors, including type IV secretion system–associated genes, and that H. suis isolates from humans and pigs were genetically very similar, suggesting possible pig-to-human transmission.
Mycoplasma bovis is a major bacterial pathogen that causes pneumonia, mastitis, and arthritis in cattle. In this study, we performed whole-genome sequencing of an M. bovis strain isolated in Japan for the first time and announce the complete genome sequence of strain KG4397, which caused respiratory diseases in cattle in 2012.
Erysipelothrix rhusiopathiae causes swine erysipelas (SE). Sporadic SE outbreaks in Japan are mostly caused by the E. rhusiopathiae serovar 1a variant featured by methionine (M) and isoleucine (I) at amino acid positions 203 and 257 of the surface protective antigen (Spa) A protein (M203/I257 SpaA-type). To determine if current vaccines are effective against infection with this variant in pigs, one representative inactivated vaccine, SER-ME (containing E. rhusiopathiae serovar 2a), was evaluated. All vaccinated pigs survived without any apparent clinical signs after lethal challenge with the Fujisawa reference strain or the variant. This indicates that the SER-ME vaccine effectively protects pigs against the infection of E. rhusiopathiae M203/I257 SpaA-type variant. Current vaccines in Japan, including SER-ME, suggest that outbreaks in Japan are unlikely caused by vaccine failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.