It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.
We investigated the effect of essential oil from the flower of Chrysanthemum boreale Makino (CBMEO) on growth of human keratinocytes (HaCaTs) and explored a possible mechanism for this response. CBMEO was extracted using the steam distillation method. CBMEO contained a total of 33 compounds. CBMEO stimulated HaCaT proliferation (EC50, 0.028 μg/mL) and also induced phosphorylation of Akt and ERK1/2 in HaCaTs (EC50, 0.007 and 0.005 μg/mL, for phosphorylated Akt and ERK1/2, respectively). Moreover, CBMEO promoted wound closure in the dorsal side skin of rat tail. This study demonstrated that CBMEO can stimulate growth of human skin keratinocytes, probably through the Akt and ERK1/2 pathways. Therefore, CBMEO may be helpful in skin regeneration and wound healing in human skin, and may also be a possible cosmetic material for skin beauty.
Artemisia montana Pampan (Compositae) (AMP) contains various compounds, including phenolic acids, alkaloids, and essential oil. It has been widely used in oriental medicine due to a variety of biological effects. However, the biological activity of the essential oil from AMP (AMPEO) on skin has not been investigated. In the present study, AMPEO was evaluated for its composition and its effect on cellular events (migration and proliferation) related to skin regeneration using normal human keratinocytes (HaCats). AMPEO, which was extracted by steam distillation, contained 42 components. AMPEO increased proliferation in HaCats in a dose-dependent manner (EC 50, 8.5 ng/mL) and did not affect migration. AMPEO also enhanced the phosphorylation of Akt and ERK 1/2 and induced the synthesis of type IV collagen, but not type I collagen in HaCats. In addition, AMPEO promoted wound closure in the dorsal side skin of rat tail. These results demonstrated that AMPEO extracted by steam distillation induced proliferation and synthesis of type IV collagen in human skin keratinocytes, and may thereby exert positive effects on skin regeneration and wound healing in human skin.
(2015) Chrysanthemumboreale flower floral water inhibits platelet-derived growth factor-stimulated migration and proliferation in vascular smooth muscle cells, Pharmaceutical Biology, 53:5, 725-734, DOI: 10.3109/13880209.2014 Context: Chrysanthemum boreale Makino (Compositae) (CBM) is a traditional medicine that has been used for the prevention or treatment of various disorders; it has various properties including antioxidation, anti-inflammation, and antitumor. Objective: The present study was designed to explore the in vitro effect of CBM flower floral water (CBMFF) on atherosclerosis-related responses in rat aortic smooth muscle cells (RASMCs). Materials and methods: CBMFF was extracted from CBM flower by steam distillation and analyzed using gas chromatography-mass spectrometry. The anti-atherosclerosis activity of CBMFF was tested by estimating platelet-derived growth factor (PDGF)-BB (10 ng/mL)-induced proliferation and migration levels and intracellular kinase pathways in RASMCs at CBMFF concentrations of 0.01-100 lM and analyzing ex vivo aortic ring assay. Results: Gas chromatography-mass spectrometry showed that the CBMFF contained a total of seven components. The CBMFF inhibits PDGF-BB-stimulated RASMC migration and proliferation (IC 50 : 0.010 lg/mL). Treatment of RASMCs with PDGF-BB induced PDGFR-b phosphorylation and increased the phosphorylations of MAPK p38 and ERK1/2. CBMFF addition prevented PDGF-BBinduced phosphorylation of these kinases (IC 50 : 008 and 0.018 lg/mL, for p38 MAPK and ERK1/ 2, respectively), as well as PDGFR-b (IC 50 : 0.046 lg/mL). Treatment with inhibitors of PDGFR, P38 MAPK, and ERK1/2 decreased PDGF-BB-increased migration and proliferation in RASMCs. Moreover, the CBMFF suppressed PDGF-BB-increased sprout outgrowth of aortic rings (IC 50 : 0.047 lg/mL). Discussion and conclusion: These results demonstrate that CBMFF may inhibit PDGF-BB-induced vascular migration and proliferation, most likely through inhibition of the PDGFR-b-mediated MAPK pathway; therefore, the CBMFF may be promising candidate for the development of herbal remedies for vascular disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.