The concentration dependence of the conformational dynamics of polymer solutions as revealed by measurements of oscillatory flow birefringence (0.f.b.) has been obtained for narrow-distribution linear, comb and regular-star molecules for concentrations in the range c[q] 5 11. The data obtained show that the relaxation-time spectrum is affected markedly by
Polyfluorenes are a class of polyaromatic macromolecules that are characterized by an alternating backbone structure that consists of a 9,9-dialkylfluorene unit in combination with another aromatic group. The nature of this aromatic unit plays a key role in the electronic properties of the polymers. For example, polyfluorenes which combine chromophoric and charge transporting aromatic units have received a great deal of attention over the last several years as the emissive layer in polymeric light emitting diodes [LUMATION* Light-Emitting Polymers (LEPs)]. More recently, polyfluorenes have also been designed to perform as the organic semiconducting layer in polymeric field effect transistors (PFETs). This effort has led to a class of polymeric semiconductors with an excellent combination of charge mobility, environmental stability, and processability. One such polymer is the polyfluorene based on an alternating backbone of 9,9-dioctylfluorene and 2,2'-bithiophene units. This material has been shown to have charge mobilities as high as 0.02 cm2/V-s with current on/off ratios of up to 106. The poly(fluorene-bithiophene) is more resistant to doping by atmospheric oxygen than other polymeric semiconductors such as poly(3-hexylthiophene). Inks based on solutions of poly(fluorene-bithiophene) in xylene, mesitylene, and other solvents have also been prepared. The paper will focus on the recent advances in the synthesis, fabrication, and electrical characterization of poly(fluorene-bithiophene). *Trademark of The Dow Chemical Company
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.