The World Health Organization declared the coronavirus disease 2019 a pandemic on March 11th, pointing to the over 118,000 cases in over 110 countries and territories around the world at that time. At the time of writing this manuscript, the number of confirmed cases has been surging rapidly past the half-million mark, emphasizing the sustained risk of further global spread. Governments around the world are imposing various containment measures while the healthcare system is bracing itself for tsunamis of infected individuals that will seek treatment. It is therefore important to know what to expect in terms of the growth of the number of cases, and to understand what is needed to arrest the very worrying trends. To that effect, we here show forecasts obtained with a simple iteration method that needs only the daily values of confirmed cases as input. The method takes into account expected recoveries and deaths, and it determines maximally allowed daily growth rates that lead away from exponential increase toward stable and declining numbers. Forecasts show that daily growth rates should be kept at least below 5% if we wish to see plateaus any time soon-unfortunately far from reality in most countries to date. We provide an executable as well as the source code for a straightforward application of the method on data from other countries.
Human mobility networks are crucial for a better understanding and controlling the spread of epidemics. Here, we study the impact of human mobility networks on the COVID-19 onset in 203 different countries. We use exponential random graph models to perform an analysis of the country-to-country global spread of COVID-19. We find that most countries had similar levels of virus spreading, with only a few acting as the main global transmitters. Our evidence suggests that migration and tourism inflows increase the probability of COVID-19 case importations while controlling for contiguity, continent co-location and sharing a language. Moreover, we find that air flights were the dominant mode of transportation while male and returning travellers were the main carriers. In conclusion, a mix of mobility and geography factors predicts the COVID-19 global transmission from one country to another. These findings have implications for non-pharmaceutical public health interventions and the management of transborder human circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.