The APS Journal Legacy Content is the corpus of 100 years of historical scientific research from the American Physiological Society research journals. This package goes back to the first issue of each of the APS journals including the American Journal of Physiology, first published in 1898. The full text scanned images of the printed pages are easily searchable. Downloads quickly in PDF format.
SUMMARY1. With dye-filled micro-electrodes single neurones in the medulla of anaesthetized paralysed cats were identified which: (a) fired rhythmically in synchrony with or were modulated by the cardiac cycle, and which ceased firing with occlusion of the ipsilateral common carotid artery (carotid sinus baroreceptor neurones); (b) were excited by stimulation of carotid body chemoreceptors by close intra-arterial injection of lobeline into the thyroid artery (carotid body chemoreceptor neurones).2. Twelve carotid baroreceptor neurones were identified, in thirty-three cats, nine of which were localized in the intermediate area of the nucleus of the solitary tract (NTS) within 1 mm ahead of or behind the obex; three units were located either in the parahypoglossal area or the dorsal portion of the paramedian reticular nucleus (PRN).3. Of the twenty-one carotid chemoreceptor neurones which were identified, thirteen were localized in the NTS, three in the parahypoglossal area and four in the dorsal PRN. 4. Bilateral lesions of the paramedian reticular area of medulla destroying the PRN, abolished or reversed the depressor response to electrical stimulation of myelinated fibres of the carotid sinus nerve (CSN), attenuated the depressor response to carotid sinus stretch and augmented the pressor response to chemoreceptor stimulation by lobeline. Such lesions did not significantly alter the reflex heart rate responses.5. Small lesions of the NTS within an area 1 mm rostral to the obex abolished all reflex blood pressure and heart rate responses to electrical stimulation of the CSN or natural stimulation of carotid baro-or chemoreceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.