The PNI is associated with overall survival and postoperative complications, in particular pancreatic fistula, in patients with pancreatic cancer. The moderate accuracy of PNI as a predictor of survival limits its clinical use.
BackgroundNeoadjuvant chemotherapy (NAC) has become the standard of care for resectable esophageal squamous cell carcinoma (ESCC) which is one of the most lethal cancers, to improve resectability and prognosis. On this basis, to provide individually optimized therapy for ESCC, a minimally-invasive biomarker for response to NAC is strongly desired. This study aimed to identify the miRNA signature in serum specimens taken from ESCC patients undergoing NAC through genome-wide microarray technology.MethodsComprehensive miRNA-expression profiles of serum specimens from ESCC patients before initial treatment were analyzed using microarray. A qPCR assay was performed to test the robustness of identified serum-based miRNA signature for discriminating response to NAC with serum specimens taken from 100 ESCC cases undergoing NAC.ResultsWe prioritized 62 miRNAs differentially expressed between responders and non-responders (absolute log2 fold change > 1.0, corresponding P < 0.05) and from the 62 miRNAs, we selected the miR-23a-5p, miR-193b-5p, and miR-873-3p, which were highly expressed in non-responders. Following qPCR analysis indicated the expression of miR-193b-5p and miR-873-3p in serum specimens were significantly higher in non-responders among three selected miRNAs (P = 0.004 and 0.001, respectively). Subsequently, we developed 2-miR-model (miR-193b-5p and miR-873-3p), 3-miR-model, and 2-miR + lymphatic invasion (ly) model based on logistic regression analysis, which achieved the better area under the receiver operating characteristic curves than those of single miRNAs as 2-miR-model, 0.70 (95% CI 0.57 to 0.82); 3-miR-model, 0.70 (95% CI 0.57 to 0.83); and 2-miR + ly, 0.73 (95% CI 0.60–0.86), respectively. Furthermore, we compared the detective power of the combined model: 2-miR + ly for discriminating non-responders to NAC, to other pretreatment clinical features. Consequently, 2-miR + ly model was superior to serum SCC antigen with great significance (P = 0.01) and to ly, and clinical T stage with marginal significance (P = 0.18, 0.07, respectively).ConclusionsCollectively, we demonstrated that the potential of a multi-miRNA biomarker for identifying NAC response in ESCC is realistic, and can be used in the clinic with the further validation.Electronic supplementary materialThe online version of this article (10.1186/s12967-018-1762-6) contains supplementary material, which is available to authorized users.
Peritoneal dissemination represents a devastating form of gastric cancer (GC) progression with a dismal prognosis. There is no effective therapy for this condition. The 5-year survival rate of patients with peritoneal dissemination is 2%, even including patients with only microscopic free cancer cells without macroscopic peritoneal nodules. The mechanism of peritoneal dissemination of GC involves several steps: detachment of cancer cells from the primary tumor, survival in the free abdominal cavity, attachment to the distant peritoneum, invasion into the subperitoneal space and proliferation with angiogenesis. These steps are not mutually exclusive, and combinations of different molecular mechanisms can occur in each process of peritoneal dissemination. A comprehensive understanding of the molecular events involved in peritoneal dissemination is important and should be systematically pursued. It is crucial to identify novel strategies for the prevention of this condition and for identification of markers of prognosis and the development of molecular-targeted therapies. In this review, we provide an overview of recently published articles addressing the molecular mechanisms of peritoneal dissemination of GC to provide an update on what is currently known in this field and to propose novel promising candidates for use in diagnosis and as therapeutic targets.
Evidence indicates that impaired immunocompetence and nutritional status adversely affect short-term and long-term outcomes of patients with cancer. We aimed to evaluate the clinical significance of preoperative immunocompetence and nutritional status according to Onodera's prognostic nutrition index (PNI) among patients who underwent curative gastrectomy for gastric cancer (GC).This study included 260 patients with stage II/III GC who underwent R0 resection. The predictive values of preoperative nutritional status for postoperative outcome (morbidity and prognosis) were evaluated. Onodera's PNI was calculated as follows: 10 × serum albumin (g/dL) + 0.005 × lymphocyte count (per mm3).The mean preoperative PNI was 47.8. The area under the curve for predicting complications was greater for PNI compared with the serum albumin concentration or lymphocyte count. Multivariate analysis identified preoperative PNI < 47 as an independent predictor of postoperative morbidity. Moreover, patients in the PNI < 47 group experienced significantly shorter overall and disease-free survival compared with those in the PNI ≥ 47 group, notably because of a higher prevalence of hematogenous metastasis as the initial recurrence. Subgroup analysis according to disease stage and postoperative adjuvant treatment revealed that the prognostic significance of PNI was more apparent in patients with stage II GC and in those who received adjuvant chemotherapy.Preoperative PNI is easy and inexpensive to determine, and our findings indicate that PNI served as a significant predictor of postoperative morbidity, prognosis, and recurrence patterns of patients with stage II/III GC.
Ferritin, which is composed of H and L subunits, plays an important role in iron storage and in the control of intracellular iron distribution. Synthesis of both ferritin subunits is controlled by a common cytosolic protein, iron regulatory protein (IRP), which binds to the iron-responsive element (IRE) in the 5'-UTR of the H- and L-ferritin mRNAs. In the present study, we have identified a single point mutation (A49U) in the IRE motif of H-ferritin mRNA, in four of seven members of a Japanese family affected by dominantly inherited iron overload. Gel-shift mobility assay and Scatchard-plot analysis revealed that a mutated IRE probe had a higher binding affinity to IRP than did the wild-type probe. When mutated H subunit was overexpressed in COS-1 cells, suppression of H-subunit synthesis and of the increment of radiolabeled iron uptake were observed. These data suggest that the A49U mutation in the IRE of H-subunit is responsible for tissue iron deposition and is a novel cause of hereditary iron overload, most likely related to impairment of the ferroxidase activity generated by H subunit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.