Although folate deficiency was reported to be associated with hyperhomocysteinemia, influence of folate supplementation on cognition remains controversial. Therefore, we explored the effects of folate supplementation on the cognition and Homocysteine (Hcy) level in relatively short periods in patients with folate deficiency and cognitive impairment. Enrolled 45 patients (mean age of 79.7 ± 7.9 years old) with folate deficiency (<3.6 ng/mL) with cognitive impairment underwent Mini-Mental State Examination (MMSE), and laboratory examinations, including folate, vitamin B12, and Hcy. The degree of hippocampal atrophy in MRI was estimated using a voxel-based specific regional analysis system for Alzheimer’s disease (VSRAD). Patients were administrated folate (5 mg/day), then Hcy, and MMSE score were re-examined after 28 to 63 days. Mean Hcy significantly decreased from 25.0 ± 18.0 to 11.0 ± 4.3 nmol/mL (p < 0.001). Average MMSE scores also significantly changed from 20.1 ± 4.7 to 22.2 ± 4.3 (p < 0.001). The degree of change in the MMSE score and basic Hcy or Hcy change was significantly positively correlated, while degree of hippocampal atrophy in MRI did not. Although several factors should be taken into account, folate supplementation ameliorated cognitive impairment, at least for a short period, in patients with folate deficiency.
Background/Aims: To clarify the change of systemic redox states in patients carrying the A3243G mutation in mitochondrial DNA (A3243G), we evaluated oxidative stress and antioxidant activity in the serum of patients. Methods: Oxidative stress and antioxidant activity in the serum samples obtained from 14 patients carrying A3243G and from 34 healthy controls were analyzed using the diacron-reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests, respectively. Results: The mean d-ROMs level of all patients was significantly greater than that of the controls (p < 0.005), and the mean BAP/d-ROMs ratio of all patients was significantly lower than that of the controls (p < 0.02). In the patients with a history of stroke-like episodes (n = 10), both mean d-ROMs and BAP levels were increased compared with those of the controls (both p < 0.01). The mean BAP level of the patients without a history of stroke-like episodes (n = 4) was significantly decreased compared with that of the controls (p < 0.001), but the mean d-ROMs levels were not significantly different. Conclusion: d-ROMs and BAP tests indicated that patients carrying A3243G are always exposed to underlying oxidative stress, even at a remission state of stroke-like episodes.
Vitamin B12 deficiency is associated with cognitive impairment, hyperhomocysteinemia, and hippocampal atrophy. However, the recovery of cognition with vitamin B12 supplementation remains controversial. Of the 1716 patients who visited our outpatient clinic for dementia, 83 had vitamin B12 deficiency. Among these, 39 patients (mean age, 80.1 ± 8.2 years) had undergone Mini-Mental State Examination (MMSE) and laboratory tests for vitamin B12, homocysteine (Hcy), and folic acid levels. The hippocampal volume was estimated using the z-score of the MRI-voxel-based specific regional analysis system for Alzheimer’s disease. This is multi-center, open-label, single-arm study. All the 39 patients were administered vitamin B12 and underwent reassessment to measure the retested for MMSE and Hcy after 21−133 days (median = 56 days, interquartile range (IQR) = 43–79 days). After vitamin B12 supplementation, the mean MMSE score improved significantly from 20.5 ± 6.4 to 22.9 ± 5.5 (p < 0.001). Hcy level decreased significantly from 22.9 ± 16.9 nmol/mL to 11.5 ± 3.9 nmol/mL (p < 0.001). Significant correlation was detected between the extent of change in MMSE scores and baseline Hcy values. The degree of MMSE score was not correlated with hippocampal atrophy assessed by the z-score. While several other factors should be considered, vitamin B12 supplementation resulted in improved cognitive function, at least in the short term, in patients with vitamin B12 deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.