In this paper, the possibility of analyzing levodopa and carbidopa by differential pulse voltammetry (DPV) utilizing a glassy carbon electrode in 0.1 mol L À1 HClO 4 is reported. Cyclic voltammograms of levodopa show a redox couple with anodic and cathodic peak potentials at 0.58 V and 0.52 V (vs. Ag/AgCl), respectively. For carbidopa, there are two oxidation waves with maximum currents at 0.53 V and 1.02 V, without any cathodic counterpart at slow enough scan rate. Since in such conditions, the oxidation product of carbidopa does not undergo reduction, it is possible to analyze levodopa without interference. On the other hand, carbidopa can be determined between 0.85 V and 1.1 V in the presence of levodopa, coating the electrode with a Nafion film, which is selective for carbidopa. The developed methodology was applied to two different commercial samples of pharmaceutical products. The obtained data were compared with the results of the analysis by high performance liquid chromatography (HPLC) with UV detection, showing good correlation (relative errors changing between 0.4% and 3.5%) and absence of interference of the other components that accompanied the pharmaceuticals.
It can be concluded that the use of the four priming agents, which are based on organic sulfur compounds, effectively enhanced bonding to the Ag-Pd-Cu-Au alloy and the component metals, although the bonding performance varied among the priming agents and metal elements. The priming agents appeared to have more of an effect on the alloy, silver and gold than on the palladium and copper.
, mas em sistemas tampões e especialmente em fosfato foram verificadas velocidades satisfatórias de transferência de elétrons. As diferenças observadas no comportamento eletroquímico e espectro de absorção UV-visível entre as flavinas imobilizadas foram discutidas em termos de diferentes tipos de interação. , but in buffer systems and especially in phosphate a good rate of electron transfer was observed. The differences verified in the electrochemical behavior and UV-visible absorption spectra among the immobilized flavins are discussed in terms of different kinds of interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.