Amyloid β-protein (Aβ42) oligomerization is an early event in Alzheimer’s disease (AD). Current diagnostic methods using sequence-specific antibodies against less toxic fibrillar and monomeric Aβ42 run the risk of overdiagnosis. Hence, conformation-specific antibodies against neurotoxic Aβ42 oligomers have garnered much attention for developing more accurate diagnostics. Antibody 24B3, highly specific for the toxic Aβ42 conformer that has a turn at Glu22 and Asp23, recognizes a putative Aβ42 dimer, which forms stable and neurotoxic oligomers more potently than the monomer. 24B3 significantly rescues Aβ42-induced neurotoxicity, whereas sequence-specific antibodies such as 4G8 and 82E1, which recognizes the N-terminus, do not. The ratio of toxic to total Aβ42 in the cerebrospinal fluid of AD patients is significantly higher than in control subjects as measured by sandwich ELISA using antibodies 24B3 and 82E1. Thus, 24B3 may be useful for AD diagnosis and therapy.
The formation of soluble oligomers of amyloid β42 and 40 (Aβ42, Aβ40) is the initial event in the pathogenesis of Alzheimer's disease (AD). Based on previous systematic proline replacement and solid-state NMR, we proposed a toxic dimer structure of Aβ42, a highly aggregative alloform, with a turn at positions 22 and 23, and a hydrophobic core in the C-terminal region. However, in addition to Aβ42, Aβ40 dimers can also contribute to AD progression because of the more abundance of Aβ40 monomer in biological fluids. Here, we describe the synthesis and characterization of three dimer models of the toxic-conformation constrained E22P-Aβ40 using l,l-2,6-diaminopimeric acid (DAP) or l,l-2,8-diaminoazelaic acid (DAZ) linker at position 30, which is incorporated into the intermolecular parallel β-sheet region, and DAP at position 38 in the C-terminal hydrophobic core. E22P-A30DAP-Aβ40 dimer (1) and E22P-A30DAZ-Aβ40 dimer (2) existed mainly in oligomeric states even after 2 weeks incubation without forming fibrils, unlike the corresponding monomer. Their neurotoxicity toward SH-SY5Y neuroblastoma cells was very weak. In contrast, E22P-G38DAP-Aβ40 dimer (3) formed β-sheet-rich oligomeric aggregates, and exhibited more potent neurotoxicity than the corresponding monomer. Ion mobility-mass spectrometry suggested that high molecular-weight oligomers (12-24-mer) of 3 form, but not for 1 and 2 after 4 h incubation. These findings indicate that formation of the hydrophobic core at the C-terminus, rather than intermolecular parallel β-sheet, triggers the formation of toxic Aβ oligomers. Compound 3 may be a suitable model for studying the etiology of Alzheimer's disease.
Herein we report that a preferable inhibition of the nucleation phase of Aβ42, related to the formation of toxic oligomers, by triterpenoids from medicinal herbs originates from a salt bridge of their carboxy groups with Lys16 and 28 in Aβ42. Such a direct interaction targeting the monomer, dimer, and trimer suppressed further oligomerization. In contrast, the corresponding congeners without carboxy groups failed to do so.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.