PurposeThe synergistic effects of a trunk orthosis and an ankle–foot orthosis (AFO) in stroke patients with a hemiplegic gait are unclear. We previously developed a trunk orthosis with joints providing resistive force (TORF) to modify malalignment of the trunk and pelvis and confirmed its positive effects in stroke patients during level walking without an AFO. The aim of the present study was to determine if this trunk orthosis and an AFO have synergistic effects during level walking in community-dwelling patients with chronic stroke.MethodsTwenty-eight community-dwelling stroke patients performed level walking at a self-selected speed with an AFO and again while wearing a TORF (TORF group) or a corset (control group). Spatiotemporal, kinematic, and kinetic data were recorded using a three-dimensional motion analysis system.ResultsWhen compared with the control group, the TORF group showed significant increases in walking speed, number of steps on the paretic leg per minute, and peak ankle plantar flexion moment during the single stance phase.ConclusionThe TORF increased the ankle joint plantar flexion moment at the end of the single stance phase during level walking in stroke patients, leading to an increase in their gait speed because of the modified trunk and pelvis alignment.
Late braking force (LBF) is often observed in the late stance phase of the paretic lower limb of stroke patients. Nevertheless, the effects and association of LBF remain unclear. We examined the kinetic and kinematic parameters associated with LBF and its effect on walking. Herein, 157 stroke patients were enrolled. Participants walked at a comfortable speed selected by them, and their movements were measured using a 3D motion analysis system. The effect of LBF was analyzed as a linear relationship with spatiotemporal parameters. Multiple linear regression analyses were performed with LBF as the dependent variable and kinetic and kinematic parameters as independent variables. LBF was observed in 110 patients. LBF was associated with decreased knee joint flexion angles during the pre-swing and swing phases. In the multivariate analysis, trailing limb angle, cooperativity between the paretic shank and foot, and cooperativity between the paretic and non-paretic thighs were related to LBF (p < 0.01; adjusted R2 = 0.64). LBF in the late stance phase of the paretic lower limb reduced gait performance in the pre-swing and swing phases. LBF was associated with trailing limb angle in the late stance, coordination between the paretic shank and foot in the pre-swing phase, and coordination between both thighs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.