Dogs (Canis familiaris) share many common genetic diseases with humans and development of disease models using a transgenic approach has long been awaited. However, due to the technical difficulty in obtaining fertilizable eggs and the unavailability of embryonic stem cells, no transgenic dog has been generated. Canine fetal fibroblasts were stably transfected with a red fluorescent protein (RFP) gene-expressing construct using retrovirus gene delivery method. Somatic cell nuclear transfer was then employed to replace the nucleus of an oocyte with the nucleus of the RFP-fibroblasts. Using this approach, we produced the first generation of transgenic dogs with four female and two male expressing RFP.
A method for engineering and producing genetically modified cats is important for generating biomedical models of human diseases. Here we describe the use of somatic cell nuclear transfer to produce cloned transgenic cats that systemically express red fluorescent protein. Immature oocytes were collected from superovulating cat ovaries. Donor fibroblasts were obtained from an ear skin biopsy of a white male Turkish Angora cat, cultured for one to two passages, and subjected to transduction with a retrovirus vector designed to transfer and express the red fluorescent protein (RFP) gene. A total of 176 RFP cloned embryos were transferred into 11 surrogate mothers (mean = 16 +/- 7.5 per recipient). Three surrogate mothers were successfully impregnated (27.3%) and delivered two liveborn and one stillborn kitten at 65 to 66 days of gestation. Analysis of nine feline-specific microsatellite loci confirmed that the cloned cats were genetically identical to the donor cat. Presence of the RFP gene in the transgenic cat genome was confirmed by PCR and Southern blot analyses. Whole-body red fluorescence was detected 60 days after birth in the liveborn transgenic (TG) cat but not in the surrogate mother cat. Red fluorescence was detected in tissue samples, including hair, muscle, brain, heart, liver, kidney, spleen, bronchus, lung, stomach, intestine, tongue, and even excrement of the stillborn TG cat. These results suggest that this nuclear transfer procedure using genetically modified somatic cells could be useful for the efficient production of transgenic cats.
The Moloney murine leukemia virus (MoMLV) -based retrovirus vector system has been used most often in gene transfer work, but has been known to cause silencing of the imported gene in transgenic animals. In the present study, using a MoMLV-based retrovirus vector, we successfully generated a new transgenic chicken line expressing high levels of enhanced green fluorescent protein (eGFP). The level of eGFP expression was conserved after germline transmission and as much as 100 microg of eGFP could be detected per 1 mg of tissue protein. DNA sequencing showed that the transgene had been integrated at chromosome 26 of the G1 and G2 generation transgenic chickens. Owing to the stable integration of the transgene, it is now feasible to produce G3 generation of homozygous eGFP transgenic chickens that will provide 100% transgenic eggs. These results will help establish a useful transgenic chicken model system for studies of embryonic development and for efficient production of transgenic chickens as bioreactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.