Abstract. Studying hemodynamic changes during early mammalian embryonic development is critical for further advances in prevention, diagnostics, and treatment of congenital cardiovascular ͑CV͒ birth defects and diseases. Doppler optical coherence tomography ͑OCT͒ has been shown to provide sensitive measurements of blood flow in avian and amphibian embryos. We combined Doppler swept-source optical coherence tomography ͑DSS-OCT͒ and live mouse embryo culture to analyze blood flow dynamics in early embryos. SS-OCT structural imaging was used for the reconstruction of embryo morphology and the orientation of blood vessels, which is required for calculating flow velocity from the Doppler measurements. Spatially and temporally resolved blood flow profiles are presented for the dorsal aorta and a yolk sac vessel in a 9.5-day embryo. We demonstrate that DSS-OCT can be successfully used for structural analysis and spatially and temporally resolved hemodynamic measurements in developing early mammalian embryos.
Results suggest that the OCT technique might be a powerful tool for noninvasive diffusion studies of different analytes in ocular tissues. However, additional methods of OCT signal acquisition and processing are required to study the diffusion of agents of small concentrations.
We demonstrate the capability of the optical coherence tomography (OCT) technique for depth-resolved monitoring and quantifying of glucose diffusion in fibrous tissues (sclera). The depth-resolved and average permeability coefficients of glucose were calculated. We found that the glucose diffusion rate is not uniform throughout the tissue and is increased from approximately 2.39+/-0.73 x 10(-6) cm/s at the epithelial side to 8.63+/-0.27 x 10(-6) cm/s close to the endothelial side of the sclera. Results demonstrated that the OCT technique is capable of depth-resolved monitoring and quantification of glucose diffusion in sclera with a resolution of approximately 40 mum.
Imaging of biological tissues with optical coherence tomography (OCT) poses a great interest for its capability to noninvasively outline subsurface microstructures within tissues. However, a major limitation for many optical imaging techniques is inadequate depth penetration of light in turbid media, which is bounded to just a few millimeters. There have been several attempts to improve light penetration depth in biological tissues, including application of different tissue optical clearing methods. In this study, an aqueous solution of glucose (40%) is added to rabbit sclera in vitro, where depth-resolved permeability coefficients and optical clearing are calculated with OCT. The permeability rate in regions in the upper 80- to 100-microm region is found to be different from that of regions in the deeper 100-microm region: (6.01+/-0.37)x10(-6) cmsec and (2.84+/-0.68)x10(-5) cmsec, respectively. A difference in percent clearing is also noted. Optical clearing of the upper region is about 10% and increased to 17 to 22% in the one beneath. These results demonstrate the capability of OCT-based methods to not only measure the diffusion rate and optical clearing of a tissue, but also its ability of functional differentiation between layers of epithelial tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.