A new photoacoustic flow cytometry was developed for real-time detection of circulating cells, nanoparticles, and contrast agents in vivo. Its capability, integrated with photothermal and optical clearing methods, was demonstrated using a near-infrared tunable laser to characterize the in vivo kinetics of Indocyanine Green alone and single cancer cells labeled with gold nanorods and Indocyanine Green in the vasculature of the mouse ear. In vivo applications are discussed, including selective nanophotothermolysis of metastatic squamous cells, label-free detection of melanoma cells, study of pharmokinetics, and immune response to apoptotic and necrotic cells, with potential translation to humans. The threshold sensitivity is estimated as one cancer cell in the background of 10(7) normal blood cells.
The goal of this work is to develop in vivo photoacoustic (PA) flow cytometry (PAFC) for time-resolved detection of circulating absorbing objects, either without labeling or with nanoparticles as PA labels. This study represents the first attempt, to our knowledge, to demonstrate the capability of PAFC with tunable near-infrared (NIR) pulse lasers for real-time monitoring of gold nanorods, Staphylococcus aureus and Escherichia coli labeled with carbon nanotubes (CNTs), and contrast dye Lymphazurin in the microvessels of mouse and rat ears and mesenteries. PAFC shows the unprecedented threshold sensitivity in vivo as one gold nanoparticle in the irradiated volume and as one bacterium in the background of 10(8) of normal blood cells. The CNTs are demonstrated to serve as excellent new NIR high-PA contrast agents. Fast Lymphazurin diffusion in live tissue is observed with rapid blue coloring of a whole animal body. The enhancement of the thermal and acoustic effects is obtained with clustered, multilayer, and exploded nanoparticles. This novel combination of PA microscopy/spectroscopy and flow cytometry may be considered as a new powerful tool in biological research with the potential of quick translation to humans, providing ultrasensitive diagnostics of pathogens (e.g., bacteria, viruses, fungi, protozoa, parasites, helminthes), metastatic, infected, inflamed, stem, and dendritic cells, and pharmacokinetics of drug, liposomes, and nanoparticles in deep vessels (with focused transducers) among other potential applications.
An in vitro experimental study of the control of the human dura mater optical properties at administration of aqueous solutions of glucose and mannitol has been presented. The significant increase of the dura mater optical transmittance under action of immersion liquids has been demonstrated. Diffusion coefficients of glucose and mannitol in the human dura mater tissue at 20 degrees C have been estimated as (1.63 +/- 0.29) x 10(-6)cm(2)/s and as (1.31 +/- 0.41) x 10(-6) cm(2)/s, respectively. Experiments show that administration of immersion liquids allows for the effective control of tissue optical characteristics that make dura mater more transparent, thereby increasing the ability of light penetration through the tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.