Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and ranks second in China. The prognosis of HCC remains dismal mainly because of its late diagnosis, especially in patients with coexisting chronic liver diseases. To identify serum biomarkers for HCC, sera from 20 healthy volunteers, 20 hepatitis B virus (HBV) infected patients and 20 HCC patients were selected for screening study and same number of sera into the same three groups were used for validation study. A strategy including sonication, albumin and immunoglobulin G (IgG) depletion and desalting was optimized for screening differentially expressed proteins of low abundance in serum. By 2-DE image analysis and MALDI-TOF-MS/MS identification, eight proteins including heat-shock protein 27 (HSP27), alpha-fetoprotein (AFP), alpha-1 antitrypsin, clusterin, caeruloplasmin, haptoglobin alpha2 chain, tranferrin and transthyretin were found significantly changed among the healthy, HBV and HCC groups. Further validation study by Western blot showed the detection of HSP27 in 90% HCC sera and two HBV sera, but in none of normal sera. Thus, 2-DE based serum proteome analysis can be useful in the screening of serum biomarkers for HCC and HSP27 could aid in the diagnosis of HCC though further validation is needed.
In order to identify factors affecting cationic liposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining lipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.
Various reagents are known to open the mitochondrial permeability pore (PTP) and induce a permeability transition (PT), releasing apoptogenic proteins from the intermembrane space and triggering apoptosis. In this study, we examined the effect of Ag(+), a known cytotoxic sulfhydryl-reactive heavy metal, on isolated rat liver mitochondria. The following results were obtained: (1) Upon addition, Ag(+) instantly induced mitochondrial swelling and acceleration of respiration. (2) Cyclosporine A, a specific inhibitor of classical PT, was ineffective against the effect of Ag(+), indicating that silver ions induced non-classic PT. (3) Sulfhydryl reagents such as reduced glutathione completely inhibited the effects of Ag(+) on the mitochondria. (4) Experimental results using polyethylene glycol indicated that Ag(+) induced opening of a pore in the inner mitochondrial membrane, which could be PTP of another open state or a distinct pore. (5) Electron microscopic analysis of mitochondria treated with Ag(+) showed a novel mitochondrial configuration that was apparently different from that of normal mitochondria or Ca(2+)-treated mitochondria. (6) Ag(+) also induced the release of apoptogenic cytochrome c in a CsA-insensitive but GSH-sensitive manner. These results suggest that Ag(+) promotes a nonclassical permeability increase in the mitochondrial inner membrane that is clearly distinguishable from the classical PT and releases apoptogenic cytochrome c in a classical PT-independent manner.
To examine whether valinomycin induces a mitochondrial permeability transition (PT), we investigated its effects on mitochondrial functions under various conditions. The acceleration of mitochondrial respiration and swelling, induced by valinomycin, were found to be insensitive to inhibitors of the ordinary PT, indicating that valinomycin does not induce the ordinary PT. Results of experiments using mitochondria isolated from transgenic mice expressing human bcl-2 also supported this conclusion. Furthermore, evidence for induction of PT pores by valinomycin was not obtained by either electron microscopic analysis of mitochondrial configurations or by measurement of the permeability of the inner mitochondrial membrane by use of polyethylene glycol. However, valinomycin did induce a significant release of cytochrome c, and thus it may be a nice tool to study the processes of mitochondrial cytochrome c release.
Abstracts. Polygonum multiflorum stilbeneglycoside (PMS) is a water-soluble fraction of Polygonum multiflorum Thunb., one of the most famous tonic traditional Chinese medicines, that has protective effects on the cardiovascular system. The purpose of the present study is to elucidate the effects of PMS on macrophage-derived foam cell functions and the reduction of severity of atherosclerosis in hypercholesterolemic New Zealand White (NZW) rabbits. NZW rabbits were fed for 12 weeks with a normal diet, a high cholesterol diet, or a high cholesterol diet associated with irrigation with different doses of PMS (25, 50, or 100 mg / kg). Treatment of NZW rabbits fed with high cholesterol diet with 100 mg / kg PMS attenuated the increase in plasma cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and plasma triglyceride. Treatment with 50 and 100 mg / kg PMS caused 43% and 60% decrease in atherosclerotic lesioned area ratio to total surface area, respectively. In U937 foam cells, PMS could decrease the high expression of intercellular adhesion molecule (ICAM)-1 protein and the vascular endothelial growth factor (VEGF) protein levels in the medium induced by oxidized lipoprotein when analyzed by flow cytometry. The results proved that PMS is a powerful agent against atherosclerosis and that PMS action could possibly be through the inhibition of the expression of ICAM-1 and VEGF in foam cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.