The aim of the present study was to verify whether extra-virgin olive oil, a dietary component naturally containing phenolic antioxidants, has the potential to protect the brain from the deleterious effects of ageing. To accomplish this goal, we used male rats fed a high-energy diet containing either maize oil, or extra-virgin olive oil with high or low phenol content (720 or 10 mg total phenols/kg oil, corresponding to a daily dose of 4 or 0·05 mg total phenols/kg body weight, respectively) from age 12 months to senescence. The measured endpoints were biochemical parameters related to oxidative stress and functional tests to evaluate motor, cognitive and emotional behaviour. Olive oil phenols did not exert major protective actions on motor and cognitive function, as we observed only a tendency to improved motor coordination on the rotarod in the old animals treated with the oil rich in phenols (40 % average increase in the time to first fall; P¼0·18). However, an interesting finding of the present study was a reduced step-through latency in the light-dark box test, found in the older animals upon treatment with the oil rich in antioxidant phenols, possibly indicating an anxiety-lowering effect. This effect was associated with decreased glutathione reductase activity and expression in the brain, a phenomenon previously associated with decreased anxiety in rodents. These results indicate a previously undetected effect of a diet containing an olive oil rich in phenols. Further studies are warranted to verify whether specific food antioxidants might also have an effect on emotional behaviour.
We investigated the effect of resveratrol on oxidation damage and variation of antioxidant defences induced by 2-nitropropane (2-NP) in rat liver. One group of five rats was given resveratrol (50 mg/kg/d body weight) in the diet until the end of the experiment. After 14 days, 2-NP (100 mg/kg) was injected i.p. into two groups of animals (2-NP + Res and 2-NP groups) while control animals were treated with vehicle alone. Animals were killed by decapitation 15 h after 2-NP injection. The levels of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodGuo) were significantly increased by 2-NP injection, but resveratrol restored 8-oxodGuo to levels similar to those measured in controls. Superoxide dismutase (SOD) and xanthine oxidase (XO) activities in the liver were significantly increased by 2-NP, but were similar to those found in the group treated with resveratrol and 2-NP (2-NP + Res). We also observed that 2-NP injection significantly reduced GSH/GSSG ratio in the liver and this change was partially reversed by resveratrol treatment. Moreover, an increased (p = 0.06) expression of the oxoguanine glycosylase (OGG1) gene was found in 2-NP rats, whereas pre-treatment with resveratrol restored OGG1 expression to control levels. An up-regulation of caspase-3 was also observed in 2-NP group, but resveratrol significantly reduced the activation of caspase-3. An inverse correlation was found between GSH/GSSG and 8-oxodGuo in the 2-NP group. On the contrary, 8-oxodGuo levels, GSH/GSSG ratio, XO and SOD activities in the colon mucosa of 2-NP rats were similar to those of controls confirming that the colon is not a target of oxidation damage 2-NP induced. In conclusion, our results indicate that oxidative DNA damage and apoptosis are the main mechanisms of cell death in a model of chemically induced severe acute hepatic injury and in this early stage of damage pharmacological doses of resveratrol can ameliorate hepatic oxidation damage by its antioxidant and scavenging properties through a reduction of XO activity, a partial restoration of GSH/GSSG ratio in addition to its capacity to inhibit apoptosis
The geometrical structures of six square-planar diacetylplatinum(II) complexes ([Pt(Ac)2L], L = hydrazine-type ligand) were calculated using six (B3LYP, CAM-B3LYP, B3PW91, M06, M06HF and PBE) DFT methods and one post-Hartree–Fock (MP2) method combined with 6-31G(d,p) basis sets for nonmetal atoms and LANL2DZ for Pt. Using percent relative errors, M06HF and MP2 are best for predicting Pt–N bond distances, but worst for Pt–C bond distances, whereas B3PW91 is best. Pt–N(pyridine) bonds have higher electron density at the bond critical points than Pt–N(hydrazone) bonds, and the former are more covalent than the latter. Further, Pt–C bonds trans to hydrazone moieties are more covalent than Pt–C bonds trans to Pt–N(pyridine) bonds. Pt–C bonds are mainly due to Pt→Ac back donation rather than Ac→Pt donation; σ-bonding is less important in this case, consistent with the high π-acidity and strong trans effect of acetyl groups. In contrast, Pt→N back donation is negligible and Pt–N bonds are mainly due to N→Pt σ-donation, which stabilizes trans Pt–C bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.