The safety of Automated Vehicles (AV) as Cyber-Physical Systems (CPS) depends on the safety of their consisting modules (software and hardware) and their rigorous integration. Deep Learning is one of the dominant techniques used for perception, prediction and decision making in AVs. The accuracy of predictions and decision-making is highly dependant on the tests used for training their underlying deep-learning. In this work, we propose a method for screening and classifying simulation-based driving test data to be used for training and testing controllers. Our method is based on monitoring and falsification techniques, which lead to a systematic automated procedure for generating and selecting qualified test data. We used Responsibility Sensitive Safety (RSS) rules as our qualifier specifications to filter out the random tests that do not satisfy the RSS assumptions. Therefore, the remaining tests cover driving scenarios that the controlled vehicle does not respond safely to its environment. Our framework is distributed with the publicly available S-TALIRO and Sim-ATAV tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.