Fiber steering is one of the promising capabilities of Automated Fiber Placement (AFP) technology in manufacturing of advanced composite structures with spatially tailored properties. The so-called variable stiffness (VS) composites have considerable scope to outperform their traditionally made constant stiffness (CS) counterparts. However, there are several design and manufacturing challenges to be addressed before practically using them as structural components. In this work we demonstrate the design, manufacturing and testing procedure of a variable stiffness (VS) composite cylinder made by fiber steering. The improved bending-induced buckling performance is the objective of the VS cylinder to be compared with its CS counterpart. The experimental results show that the buckling capacity of the VS cylinder is about 18.5% higher than its CS counterpart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.