This paper applies the Random Forest (RF) method for the robust modelling of credit default prediction. This technique has been proven as an efficient classifier and can provide better interpretability in comparison to other classifiers. Using Chines micro-enterprise credit data set, this study emphasizes the multidimensional analysis of credit risk, such as the whole sample, subsample, and the incremental effect of the group of predictors. To that end, relative variable importance (RVIs) has been presented for all predictors according to the contribution in the prediction accuracy so that to ensure interpretability of the model. The empirical findings confirm that RF technique is reliable and efficient across all of the criteria used in this study. In addition, the examined experimental analysis indicates that non-traditional variables have a significant effect on the classification accuracy. Thus, this paper recommends some alternative predictors like the legal representative's basic information, internal non-financial factors, along with traditional financial variables for sustainable model development. The performance is compared from the perspective of five different performance measures. This modelling algorithm can be used by different financial markets participants to measure systematically credit default prediction of individual and institutional customers.
Credit risk prediction is essential for banks and financial institutions as it helps them to evade any inappropriate assessments that can lead to wasted opportunities or monetary losses. In recent times, the hybrid prediction model, a combination of traditional and modern artificial intelligence (AI) methods that provides better prediction capacity than the use of single techniques, has been introduced. Similarly, using conventional and topical artificial intelligence (AI) technologies, researchers have recommended hybrid models which amalgamate logistic regression (LR) with multilayer perceptron (MLP). To investigate the efficiency and viability of the proposed hybrid models, we compared 16 hybrid models created by combining logistic regression (LR), discriminant analysis (DA), and decision trees (DT) with four types of neural network (NN): adaptive neurofuzzy inference systems (ANFISs), deep neural networks (DNNs), radial basis function networks (RBFs) and multilayer perceptrons (MLPs). The experimental outcome, investigation, and statistical examination express the capacity of the planned hybrid model to develop a credit risk prediction technique different from all other approaches, as indicated by ten different performance measures. The classifier was authenticated on five real-world credit scoring data sets.
This journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC-BY-NC).Articles can be read and shared for noncommercial purposes under the following conditions: BY: Attribution must be given to the original source (Attribution) NC: Works may not be used for commercial purposes (Noncommercial) This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don't have to license their derivative works on the same terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.