CARDIAC IMAGINGC oronary CT angiography (CCTA) is currently recommended for the assessment of many cardiovascular diseases, including coronary artery disease (CAD) evaluation (1). CCTA is particularly important for its high negative predictive value for CAD in a low-and intermediaterisk acute chest pain population, with a high sensitivity and specificity for CAD in a low-and intermediate-risk chronic coronary syndrome population (2-5). This had been made possible by the recent technical evolution of the CT systems and the existence of large-scale validation cohort studies (6,7). However, conventional CCTA still has a limited spatial resolution and soft-tissue contrast, which impairs its diagnostic performance for small arteries (ie, ,2 mm) and high-contrast (eg, stent, calcification) and low-contrast (eg, noncalcified plaque) tasks, and carries the risks of relatively high x-ray dose delivery.Over the past 5 years, photon-counting CT (PCCT) technology has emerged in the field of CT imaging. Compared with conventional CT, this new modality has better spatial resolution and soft-tissue contrast and reduced noise, blooming, and beam-hardening artifacts (8). This is because of new energy-resolving detectors, called photon-counting Background. Spatial resolution, soft-tissue contrast, and dose-efficient capabilities of photon-counting CT (PCCT) potentially allow a better quality and diagnostic confidence of coronary CT angiography (CCTA) in comparison to conventional CT. Purpose:To compare the quality of CCTA scans obtained with a clinical prototype PCCT system and an energy-integrating detector (EID) dual-layer CT (DLCT) system. Materials and Methods:In this prospective board-approved study with informed consent, participants with coronary artery disease underwent retrospective electrocardiographically gated CCTA with both systems after injection of 65-75 mL of 400 mg/mL iodinated contrast agent at 5 mL/sec. A prior phantom task-based quality assessment of the detectability index of coronary lesions was performed. Ultra-high-resolution parameters were used for PCCT (1024 matrix, 0.25-mm section thickness) and EID DLCT (512 matrix, 0.67-mm section thickness). Three cardiac radiologists independently performed a blinded analysis using a five-point quality score (1 = insufficient, 5 = excellent) for overall image quality, diagnostic confidence, and diagnostic quality of calcifications, stents, and noncalcified plaques. A logistic regression model, adjusted for radiologists, was used to evaluate the proportion of improvement in scores with the best method.Results: Fourteen consecutive participants (12 men; mean age, 61 years 6 17) were enrolled. Scores of overall quality and diagnostic confidence were higher with PCCT images with a median of 5 (interquartile range [IQR], 2) and 5 (IQR, 1) versus 4 (IQR, 1) and 4 (IQR, 3) with EID DLCT images, using a mean tube current of 255 mAs 6 0 versus 349 mAs 6 111 for EID DLCT images (P , .01). Proportions of improvement with PCCT images for quality of calcification, stent, and non...
Purpose: The quality assurance (QA) procedures in particle therapy centers with active beam scanning make extensive use of films, which do not provide immediate results. The purpose of this work is to verify whether the 2D MatriXX detector by IBA Dosimetry has enough sensitivity to replace films in some of the measurements. Methods: MatriXX is a commercial detector composed of 32×32 parallel plate ionization chambers designed for pre-treatment dose verification in conventional radiation therapy. The detector and GAFCHROMIC® films were exposed simultaneously to a 131.44 MeV proton and a 221.45 MeV/u carbon-ion therapeutic beam at the CNAO therapy center of Pavia -Italy, and the results were analyzed and compared. Results: The sensitivity MatriXX on the beam position, beam width and field flatness was investigated. For the first two quantities, a method for correcting systematic uncertainties, dependent on the beam size, was developed allowing to achieve a position resolution equal to 230 µm for carbon ions and less than 100 µm for protons. The beam size and the field flatness measured using MatriXX were compared with the same quantities measured with the irradiated film, showing a good agreement. Conclusions:The results indicate that a 2D detector such as MatriXX can be used to measure many parameters of a scanned ion beam quickly and precisely and suggest that the QA would benefit from a new protocol where the MatriXX detector is added to the existing systems.
Purpose: To describe a new system for scanned ion beam therapy, named RIDOS (Real-time Ion DOse planning and delivery System), which performs real time delivered dose verification integrating the information from a clinical beam monitoring system with a Graphic Processing Unit (GPU) based dose calculation in patient Computed Tomography.Methods: A benchmarked dose computation algorithm for scanned ion beams has been parallelized and adapted to run on a GPU architecture. A workstation equipped with a NVIDIA GPU has been interfaced through a National Instruments PXI-crate with the dose delivery system of the Italian National Center of Oncological Hadrontherapy (CNAO) to receive in real-time the measured beam parameters. Data from a patient monitoring system are also collected to associate the respiratory phases with each spot during the delivery of the dose. Using both measured and planned spot properties, RIDOS evaluates during the few seconds of inter-spill time the cumulative delivered and prescribed dose distributions and compares them through a fast γ-index algorithm.Results: The accuracy of the GPU-based algorithms was assessed against the CPU-based ones and the differences were found below 1‰. The cumulative planned and delivered doses are computed at the end of each spill in about 300ms, while the dose comparison takes approximatively 400ms. The whole operation provides the results before the next spill starts. Conclusions: RIDOS system is able to provide a fast computation of the delivered dose in the inter-spill time of the CNAO facility and allows to monitor online the dose deposition accuracy all along the treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.