To investigate the genetic diversity of potato virus M (PVM; genus Carlavirus, family Betaflexiviridae), the complete nucleotide sequence of the coat protein gene of 30 PVM isolates from a major potato-growing region in Iran were determined. Phylogenetic analysis of these Iranian PVM isolates together with those available in the GenBank database suggested two divergent evolutionary lineages that did not reflect the origin of the isolates, and these were designated as PVM-o and PVM-d. Examination of the genetic variability of the coat protein of Iranian isolates and their counterparts whose sequences are available in the Genbank database revealed 16 genotype groups in the PVM population. Analysis of the synonymous-tononsynonymous ratio showed strong purifying selection in the CP gene in the genotype groups of divergent clades.
Grapevine fanleaf virus (GFLV) was detected in samples of Bermuda grass (BG) from Iran by reverse transcription-polymerase chain reaction (RT-PCR) using two different pairs of GFLV-specific primers, and also by enzyme-linked immunosorbent assay (ELISA) using antiserum specific for a North American isolate of the virus. RT-PCR detected GFLV in both fresh and dried BG tissues and in virus preparations purified from these plants. Cloning and sequencing of the RT-PCR products confirmed that the amplified sequences were sections of the GFLV coat protein gene. Similar results were obtained when random and oligo(dT) primers were used on viral RNA templates recovered from BG to synthesize cDNA for cloning and sequencing. The virus induced few or no symptoms in BG, but could nonetheless be transmitted from BG to Chenopodium quinoa by mechanical inoculation. Some isolates induced systemic chlorotic spots and leaf deformation; others remained symptomless in this plant. Both symptomatic and symptomless C. quinoa plants were found to be infected with GFLV, giving positive ELISA and RT-PCR tests. A North American isolate of GFLV was found to be mechanically transmissible to BG as indicated by positive RT-PCR results from root samples of inoculated plants. GFLV-infected BG was widely distributed in the Fars province of Iran.
Tephritid fruit flies are ranked as one of the most damaging groups of insect pests. Morphological identification of fruit flies is mainly performed on adults due to the lack of adequate identification keys for immature stages. The peach fruit fly, Bactrocera zonata (Saunders), infests some of the principal commercial fruits and vegetables. It is, therefore important to avert its global dispersal, particularly by accurately identifying this species at ports of entry. In this study, a TaqMan real-time polymerase chain reaction (PCR) was developed for the accurate identification and sensitive detection of the peach fruit fly. A novel set of primers and probe were designed to specifically identify the mitochondrial cytochrome oxidase I (COI) gene. All specimens of peach fruit fly (including various life stages) were detected, and no cross reactivity with other tested tephritids were observed. Since this assay performed equally well with crushed insects and purified DNA, we note added efficiency by eliminating DNA extraction step. Considering the speed, specificity as well as sensitivity of the assay, Taqman real-time PCR can be used as a swift and specific method for pest species at ports of entry.
Beet curly top Iran virus (BCTIV) is a major pathogen of sugar beet in Iran. In order to study diversity of BCTIV, we sampled 68 plants in Iran during the summer of 2010 with curly top disease symptoms on beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata), tomatoes (Solanum lycopersicum L.), sea beets (Beta vulgaris subsp. maritima), and sugar beets (Beta vulgaris). Plant samples showing leaf curling, yellowing, and/or swelling of veins on the lower leaf surfaces were collected from various fields in Khorasan Razavi, Northern Khorasan (north-eastern Iran), East Azarbayejan, West Azarbayejan (north-western Iran), and Fars (southern Iran) provinces. Using rolling circle amplification coupled with restriction digests, cloning, and Sanger sequencing, we determined the genomes of nine new BCTIV isolates from bean, cowpea, tomato, sea beet, and sugar beet in Iran. Our analysis reveals ~11 % diversity amongst BCTIV isolates and we detect evidence of recombination within these genomes.
Nowadays, with increasing trend of trans-boundary transportation of agricultural products and higher probability of introduction of many invasive species into new areas, fast and precise species diagnosis is of great significance particularly at the port of entry, where morphological identification often requires adult insect specimens especially with specialist insects. The cucumber fruit fly, Dacus ciliatus Loew (Diptera: Tephritidae), ranks as one of the most destructive agricultural pests attacking mainly fruits of Cucurbitaceae. This pest is also widespread and highly invasive; thus, it is a high priority for pest detection and quarantine programs. Although cucumber fruit fly adults can usually be identified and distinguished from the other species by morphological keys, it is often difficult or impossible to distinguish this species from the other tephritids that share host plants by using material from other stages of development. In such situations, using a quick and robust alternative species diagnostic tool would be valuable. In this study, we assessed a technique combining loop-mediated isothermal amplification (LAMP) with PCR (PCR-LAMP) for the rapid detection and discrimination of cucumber fruit fly DNA from some other common tephritid species attacking Cucurbitaceae, using material from different stages of development. The described method was species-specific and sensitive and provided a rapid diagnostic tool to detect D. ciliaus even by non-experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.