Wafer bonding can be substituted for heteroepitaxy when manufacturing specific heterojunction-based devices. Devices manufactured using wafer bonding include multijunction solar cells, integrated sensors, heterogeneously integrated photonic devices on Si (such as high-performance laser diodes), Mach-Zehnder modulators, photodetectors, optical filters, and surface acoustic wave devices. In these devices, creating heterointerfaces between different semiconductors with heavily mismatched lattice constants and/or significant thermal expansion mismatch presents significant challenges for heteroepitaxial growth. High costs and poor yields in heavily mismatched heteroepitaxy can be addressed by wafer bonding in these optoelectronic devices and sensors, including the LiTaO3/Si and LiTaO3/SiO2 heterostructures. In the present work, heterostructure formation between piezoelectric LiTaO3 (100) and Si (100) and α-quartz SiO2 (100) is investigated via wafer bonding. Direct bonding is selected instead of heteroepitaxy due to a significant thermal expansion mismatch between LiTaO3 and Si-based materials. The coefficient of thermal expansion (CTE) of LiTaO3 is 18.3 × 10−6/K. This is 1 order of magnitude larger than the CTE for Si, 2.6–2.77 × 10−6/K and 25–30 times larger than the CTE for fused SiO2 and quartz (which ranges 0.54–0.76 × 10−6/K). Thus, even at 200 °C, a 4 in. LiTaO3/Si bonded pair would delaminate with LiTaO3 expanding 300 μm in length while Si would expand only by 40 μm. Therefore, direct wafer bonding of LiTaO3/Si and LiTaO3/SiO2 is investigated with low temperature (T < 500 K) Nano-Bonding™, which uses surface energy engineering (SEE). SEE is guided by fast, high statistics surface energy measurements using three liquid contact angle analysis, the van Oss/van Oss–Chaudhury–Good theory, and a new, fast Drop Reflection Operative Program analysis algorithm. Bonding hydrophobic LiTaO3 to hydrophilic Si or SiO2 is found to be more effective than hydrophilic LiTaO3 to hydrophobic Si or SiO2 temperatures for processing LiTaO3 are limited by thermal decomposition LiTaO3 into Ta2O5 at T ≥ 180 °C due to Li out-diffusion as much as by LiTaO3 fractures due to thermal mismatch.
The current approach of modifying standardized prosthetics for orthopedic, dental and maxillofacial implants made from conventional manufacturing techniques have been found inconvenient to customize for specific cases as the complex geometry of the skeletal tissue varies appreciably from patient to patient [ 1 , 2 ]. These standard procedures justly demand patient-specific, complex-shaped, custom-made implants be reliably delivered in minimal time. In this specific regard, 3DP implants are extensively researched [ 3 ]. A significant number of research outcomes sufficiently emphasize the desirable superior shape conformity and the short delivery time provided by the custom-made 3DP implants compared over conventional implants. These potential benefits facilitated by the novel 3DP technology can be adequately explained by the inherent ability of various modern 3DP disciplines to manufacture complex shaped implants by efficiently converting any patient-specific x-ray or CT scans into STL files. In this academic paper, we comparatively review the methods and materials utilized for specific 3DP implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.