Organophosphorous pesticides are widely used in agriculture to control major insect pests. Chlorpyrifos is one of the major organophosphorous pesticides which is used to control insects including termites, beetles. The widespread use of these pesticides is hazardous to the environment and also toxic to mammals, thus it is essential to remove the same from the environment. From the chlorpyrifos contaminated soil nine morphologically different bacterial strains, one actinomycete and two fungal strains were isolated. Among those isolates four bacterial strains which were more efficient were developed as consortium. The four bacterial isolates namely Pseudomonas putida (NII 1117), Klebsiella sp., (NII 1118), Pseudomonas stutzeri (NII 1119), Pseudomonas aeruginosa (NII 1120) present in the consortia were identified on the basis of 16S rDNA analysis. The intracellular fractions of the consortium exhibited more organophosphorus hydrolase activity (0.171 ± 0.003 U/mL/min). The degradation studies were carried out at neutral pH and temperature 37°C with chlorpyrifos concentration 500 mg L(-1). LC-mass spectral analysis showed the presence of metabolites chlopyrifos-oxon and Diethylphosphorothioate. These results highlight an important potential use of this consortium for the cleanup of chlorpyrifos contaminated pesticide waste in the environment.
The potential of recently isolated bacteria Paenibacillus larvae for the effective decolorization of Indigo carmine was evaluated. The effects of operational parameters (temperature, pH, dye concentration, shaking/non shaking) were tested. Maximum extent of decolorization was observed when the medium was incorporated with 10 g/l of yeast extract and peptone. Decolorization was strongly inhibited at non-shaken conditions as well as incorporation of inorganic sources (sodium nitrite and ammonium chloride) in the medium. Maximum decolorization was observed at 30 degrees C (100%) and 40 degrees C (92%) at 8 h of incubation. The LC-MS and NMR analysis confirms the oxidation of Indigo carmine . The primary degradation products were found to be Isatin sulfonic acid and anthranilicacid.
A rapid, cost effective method of metagenomic DNA extraction from soil is a useful tool for environmental microbiology. The present work describes an improved method of DNA extraction namely “powdered glass method” from diverse soils. The method involves the use of sterile glass powder for cell lysis followed by addition of 1% powdered activated charcoal (PAC) as purifying agent to remove humic substances. The method yielded substantial DNA (5.87 ± 0.04 μg/g of soil) with high purity (A260/280: 1.76 ± 0.05) and reduced humic substances (A340: 0.047 ± 0.03). The quality of the extracted DNA was compared against five different methods based on 16S rDNA PCR amplification, BamHI digestion and validated using quantitative PCR. The digested DNA was used for a metagenomic library construction with the transformation efficiency of 4 X 106 CFU mL-1. Besides providing rapid, efficient and economical extraction of metgenomic DNA from diverse soils, this method’s applicability is also demonstrated for cultivated organisms (Gram positive B. subtilis NRRL-B-201, Gram negative E. coli MTCC40, and a microalgae C. sorokiniana UTEX#1666).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.