Abstract. Construction is one of an important industry which contributes to the economic growth in Malaysia. However, it has been revealed that 79.5 percent and 66.7 percent of the public and private projects were not completed within the time specified in the contracts out of 359 projects in Malaysia. Therefore, the purpose of this study is to investigate the delay factor caused project delay at rural area. A 5-points Likert scale questionnaire survey were answered by 111 respondents which having experience with rural construction project. The questionnaire data were analysed by using Relative Importance Index (RII). Five top factors were determined from this study based on their RII values which are improper construction method implemented by contractor, weather condition, difficulties in providing delivery to site, breakdown of site equipment, and poor qualification of contractor's technical staffs.
Abstract. Urbanization and rapid growth in construction have led to the problems of global warming and urban heat island throughout the world. In order to reduce these problems particularly in hot and humid climatic region, a research on current level of outdoor thermal comfort and wind characteristics based on the local weather conditions around Malaysia should be conducted. This paper reports on the analysis of outdoor thermal comfort level at hottest temperatures and wind characteristics at three locations in Peninsular Malaysia by using hourly climatic data recorded by Malaysian Meteorological Department (MetMalaysia). The level of outdoor thermal comfort was assessed based on the Universal Thermal Climate Index (UTCI). The results showed extreme heat stress conditions have occurred at Alor Setar, Kuantan, and Subang with UTCI values of 51.2°C, 49.7°C, and 49.0°C respectively taking into account only temperature data from the year 2012 to 2014. However, for 20 years data from 1994 to 2014, the calculated UTCI also showed extreme heat stress conditions with their respective values of 49.6°C, 43.8°C, and 49.7°C for Alor Setar, Kuantan, and Subang respectively. Meanwhile, the hourly mean wind speed for three years data at Alor Setar, Kuantan, and Subang, were 1.70m/s, 1.69m/s, and 1.63m/s respectively. The highest mean wind speed of 11.6m/s was observed at Subang, while no wind movement (i.e. 0m/s) was considered to be the lowest hourly wind speed for all three locations. The observed prevailing wind direction for all the three locations was from the north (0°). It can be concluded that Peninsular Malaysia is generally facing extreme heat stress problem due to unfavourable climatic conditions.
Bitumen and interlocking paving blocks are the common materials used in the construction of flexible road pavements in Malaysia and other developing countries. In the last few years, more focus has been paid on the interlocking paving block when dealing with less durable area because of certain environmental and organizational limitations. Nonetheless, cement has been used as a bonding agent in the conventional concrete interlocking paving block (CIPB) and has a detrimental effect on the environment. This research was therefore conducted to examine the alternative material to paving block by substituting cement content with plastic wastes; so called as an Eco-interlocking paving block (Eco-IPB). The aim of this research was to produce a sustainable, lightweight, stiff and cost-effective product. In this research, the Eco-IPB was prepared in four different LDPE/sand blends of 1:1, 1:2, 1:3 and 1:4. The thermal analysis and physical tests were conducted to determine the temperature effect and physical performance of plastic bags. The performance of Eco-IPB was evaluated with regard to the density measurement, water absorption and compression test. The findings showed that the optimum LDPE/sand ratio of Eco-IPB of LDPE was 1:2 based on the high compressive strength of 20.80 MPa which had been achieved. Moreover, the widespread use of plastic waste as an alternative construction material will help to reduce plastic residues and promote green technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.