Thermoelectric cooling (TEC), in particular, can be combined with a heat sink for local cooling, but they can also be integrated into electronic chips for point-to-point cooling. The study aims to develop a dynamic model of a cooling system integrated with TEC for glass window. The main target of this study is to develop a dynamic model of a cooling system integrated with TEC. The black box modelling approach in producing a mathematical model was selected based on the ARMAX and ARX model that corresponds to the actual dynamic state of the cooling system. The best model was finalized based on the best match on curve patterns when comparing the real and estimated models using the system identification tools in MATLAB, and also having the least error. The accuracy of the models was compared and analysed. The results showed that the 4th order of the ARMAX model produced a higher best fitting and standard deviation values of 80.23% and 0.027592 compared to the 4th order of the ARX model of 78.14% and 0.030769 respectively. This system accuracy is almost within the acceptable range for most error calculations in the validation method. Yet, this cooling system integrated with TEC is found more suitable for the 4th order of the ARMAX model when compared to the ARX model due to the noise parameter in the ARMAX model. Nevertheless, the noise order in this system is not dominant, therefore, whenever the noise order of the system in the ARMAX model is high than the second structure (nb), the number of errors is also high. In addition, the ARMAX model is found incapable of achieving the highest fitting due to the losses from the dynamic environment and losses from the TEC itself. Still, the use of this black box model used in this study is a significant variation where system parameters can be identified even offline.
The automotive industry has rapidly introduced pollution-free vehicles such as Electric Vehicle (EV). The development and improvement of the EV to replace the conventional vehicle become crucial to obtain the customer satisfaction and high technology achievements. The main systems in EV that are improvise to be switch from the conventional engine with a fuel source to an electric type drive system, include the electric motor and the energy/power storage called battery. There are several types of electric motors that suitable for EV and the best solution was Brushless Direct Current (BLDC) motor in terms of power, speed, torque and low maintenance. Meanwhile, the fuel source replacement is the electrical energy/power storage such as batteries. The aims were to study the best Energy Storage System (ESS) in EV which leads to introducing Battery Energy Storage System (BESS), but the drawbacks of the system give the opportunity improvement, in replacement using Supercapacitor Energy storage System (SESS) and Hybrid Energy Storage System (HESS). SESS is a reliable source, but the stand-alone Supercapacitor also has a minimum operation time. With several adjustments in the energy management control strategy, the discharge rate of energy from a supercapacitor can be minimized to prolong its operation.
Perovskite solar cells have shown remarkable performance and improvements in terms of solar cell efficiency. The ETL material is one of the important components in perovskite solar cells in conducting electrons to produce current. Here, ZnO was used as ETL material in a perovskite solar cell using the SCAPS 1D simulation software. The ZnO ETL showed poor cell efficiency due to its reaction with the perovskite material. A small amount of Al doped into ZnO was introduced to enhance the physiochemical properties of the ZnO against perovskite materials. Al concentrations were varied between 1 and 4 mol% to observe the effect on cell efficiency. Compared with a conventional ZnO ETL solar cell with 0 mol% Al perovskite, the Al-doped based solar cell showed better performance. Meanwhile, perovskite solar cells with 1 mol% Al-doping and appropriate layer thickness showed the best cell performance in improving the charge transport mechanism, resulting in increased cell efficiency. Thus, the parameters studied can be a guide in the fabrication process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.