Nanocellulose has received increasing attention in science and industry in recent years as a nanoscale material for the reinforcement of polymer matrix composites due to its superior mechanical properties, renewability, and biodegradability. New nanocellulose sources, modifications, and treatments are under development to reduce the high energy required during production and to create a more suitable industrial-scale production process. Thus, this paper reviews plant-based nanocellulose composites and their properties, with a focus on their thermal-related characteristics. The purpose of this review is to establish for readers the impact of the incorporation of nanocellulose on the thermal and dynamic mechanical properties of nanocellulose composites. Understanding of the thermal properties is important for researchers to assess the suitability of the nanocomposites for a variety of applications in response to new and evolving societal requirements.The first NFC was produced from wood by using high-pressure homogenization without any pretreatment. 11,12 However, this method is a very energy-intensive process. Therefore, chemical treatments such as 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation combined with mechanical and chemical
The key attributes of core–shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core–shell fibers, followed by the summary of recent preparation methods of core–shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core–shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core–shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.