In this paper, by using of gas flow pattern, a novel neural network-based fault detection method is presented to detect the leakage in the gas pipeline. The pipe is divided into four segments, and each segment is modeled by using input/output pressure of the gas flow. For this purpose, the acquired practical data from the real life gas pipeline are gathered and utilized for training a neural network to model the process. Some of the data are used for training set to adjust the neural network weights, and others are used to evaluate the performance of the neural network-based fault detection system. Gathered practical data from a real life pipeline made sure that the proposed method is prominent and applicable for practical implementations. The model was verified with the data obtained from the test in the actual pipeline and compared with leakage mode. KEYWORDS artificial neural network (ANN), gas pipeline, leakage detection, pattern recognition, wireless sensor network (WSN)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.