We propose forwarding-function ( ) based routing protocol for underwater sensor networks (UWSNs): improved adaptive mobility of courier nodes in threshold-optimized depth-based-routing (iAMCTD). Unlike existing depth-based acoustic protocols, the proposed protocol exploits network density for time-critical applications. In order to tackle flooding, path loss, and propagation latency, we calculate optimal holding time ( ) and use routing metrics: localization-free signal-to-noise ratio (LSNR), signal quality index (SQI), energy cost function (ECF), and depth-dependent function (DDF). Our proposal provides on-demand routing by formulating hard threshold ( th ), soft threshold ( th ), and prime energy limit ( prime ). Simulation results verify effectiveness and efficiency of the proposed iAMCTD. BackgroundUnderwater acoustic sensor networks (UASNs), as a subclass of wireless sensor networks (WSNs), are specifically used for monitoring purposes in aqueous environment. The acoustic wireless sensors along with sink(s), distributed under water, constitute the basic body of UASN, where acoustic sensors gather the information of interest and then following a routing strategy forward these data to the end station. WHOI Micro-Modem [1] and Crossbow Mica2 [2] are among the commercially available sensors for underwater environments. Sink is generally supposed to have no power constraint, whereas the acoustic sensors are equipped with limited battery power. These networks provide diversified range of applications like pollution monitoring, ocean current detection, submarine discovery, deep sea explorations, and seabed management.Due to the nature of aqueous environment, improving energy efficiency at routing layer is a challenging task. Moreover, as there are major differences between terrestrial and underwater conditions, hence the basic concepts of terrestrial routing can not be implemented in UWSNs. To tackle these problems, researchers exercise the role of low speed acoustic signals for aqueous communication and sea navigation systems, leading to high propagation delay and transmission losses. High shipping activity, thermal noise, and turbulent noise also increase the error rate. Authors in [3] design the underwater acoustic channel to descriptively analyze the total noise density and path loss. On the other hand [4], it investigates diverse routing architectures for 2-dimensional and 3-dimensional UWSNs. Fundamental analyses of aqueous conditions show that reactive routing is more challenging than the proactive one. Battery replacement and efficient routing are among the solutions to overcome the
In dense underwater sensor networks (UWSN), the major confronts are high error probability, incessant variation in topology of sensor nodes, and much energy consumption for data transmission. However, there are some remarkable applications of UWSN such as management of seabed and oil reservoirs, exploration of deep sea situation and prevention of aqueous disasters. In order to accomplish these applications, ignorance of the limitations of acoustic communications such as high delay and low bandwidth is not feasible. In this paper, we propose Adaptive mobility of Courier nodes in Threshold-optimized Depth-based routing (AMCTD), exploring the proficient amendments in depth threshold and implementing the optimal weight function to achieve longer network lifetime. We segregate our scheme in 3 major phases of weight updating, depth threshold variation and adaptive mobility of courier nodes. During data forwarding, we provide the framework for alterations in threshold to cope with the sparse condition of network. We ultimately perform detailed simulations to scrutinize the performance of our proposed scheme and its comparison with other two notable routing protocols in term of network lifetime and other essential parameters. The simulations results verify that our scheme performs better than the other techniques and near to optimal in the field of UWSN.
Underwater Acoustic Sensor Networks (UASNs) offer their practicable applications in seismic monitoring, sea mine detection, and disaster prevention. In these networks, fundamental difference between operational methodologies of routing schemes arises due to the requirement of time-critical applications; therefore, there is a need for the design of delay-sensitive techniques. In this paper, Delay-Sensitive Depth-Based Routing (DSDBR), Delay-Sensitive Energy Efficient Depth-Based Routing (DSEEDBR), and DelaySensitive Adaptive Mobility of Courier nodes in Threshold-optimized Depth-based routing (DSAMCTD) protocols are proposed to empower the depth-based routing schemes. The performance of the proposed schemes is validated in UASNs. All of the three schemes formulate delay-efficient Priority Factors (PF) and Delay-Sensitive Holding time (DSH ) to minimize end-to-end delay with a small decrease in network throughput. These schemes also employ an optimal weight function ( ) for the computation of transmission loss and speed of received signal. Furthermore, solution for delay lies in efficient data forwarding, minimal relative transmissions in low-depth region, and better forwarder selection. Simulations are performed to assess the proposed protocols and the results indicate that the three schemes largely minimize end-to-end delay along with improving the transmission loss of network.
Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.