Hydrogeochemical characterization and suitability study of dug well water for domestic purpose were carried out in a semi-arid rural village in Burkina Faso. Thirty water samples were collected from 15 wells in dry and wet seasons, 2017. Electrical conductivity (EC) and total dissolved solids as well as major ions of all samples were within the World Health Organization (WHO) permissible limits for drinking water. In contrast, nine wells had pH beyond the WHO limit during the dry season and one well had very high NO3- concentration in the wet season. Most wells were seriously polluted with total Cr (CrT) in both seasons (11 and 14 wells in dry and wet seasons, respectively). Although Pb was not detected in the wells during the dry season, six wells showed Pb concentrations exceeding the WHO guideline limit for drinking water in the wet season. Graphic interpretation, including the Piper diagram, major ion ratios and Na/Cl versus EC, were used to characterize the hydrochemistry and water – rock interaction within the wells. The dominant hydrochemical facies of the wells was Ca-HCO3 during the dry season, reflecting the influence of silicate weathering. Following loadings of agricultural and domestic effluent, the hydrochemical facies shifted to more mixed type during the wet season. All samples had negative chloro-alkaline indices, suggesting retention of Ca2+ and Mg2+ by the aquifer materials and release of Na+ and K+ into the groundwater. In addition to silicate weathering, the hydrochemistry and water quality of the majority of the wells were partially controlled by the evaporation process and longer water–rock interaction in the dry season. In contrast, recharge and dilution effects appeared to alter the natural hydrochemistry of the wells in the wet season. Geochemical characterization has clearly shown that seasonal changes do affect the dug well water quality. The study also demonstrated that, in terms of CrT and Pb, water from the majority of the wells was not suitable for drinking. A special attention should be therefore paid to groundwater quality protection in the
Soil organic carbon (SOC) and total nitrogen (TN) play a central role in physico-chemical fertility of a soil, and thus promoting agricultural productivity. Yet little is known about SOC and TN dynamics in tropical ferruginous soils of Sub-Saharan Africa. In this study, thicket and intergrowth soil samples, under both cultivation and perennial grass fallow (Andropogon gayanus), were collected in Bondoukuy, western Burkina Faso. The samples were fractionated and their SOC and TN contents in six organo-mineral fractions were analyzed. Because of the high labile organic matter pools in coarse sand fractions, SOC (~630 µg C g –1 soil) associated with these fractions appeared to be more accessible to soil microbes than recalcitrant and occluded pools (~440 µg C g –1 soil) within the fine fractions of the fallow soils. The results also indicated that clay fractions are likely to represent a source of the available nitrogen to crop following long fallow periods (~20 years). In contrast, the differences in TN contents were not significant (p>0.05) between ploughed plots and young fallow lands (~10 years). The substantial decrease in C/N ratios from coarse particulate organic matter pools (C/N=68) to fine pools (C/N=10) suggested an increase in the SOC decomposition rate in the fine fractions. This indicates a substantial decrease in microbial activities following a reduction in particulate organic matter sizes. The SOC contents were relatively high in coarse (~930 µg C g –1 soil) fractions of the thicket soils compared to those of the adjacent intergrowth soils (~620 µg C g –1 soil). A similar SOC distribution pattern was also observed in fine fractions of the thicket and the intergrowth soils. Total nitrogen also exhibited a high distribution pattern in fine sand and very fine sand fractions. The findings of this study demonstrated that SOC and TN restoration in semi-arid tropical savannah soils is a function of particulate organic matter sizes, vegetation type and soil management practices.
L’utilisation des déchets urbains comme fertilisants organiques peut être à l’origine d’une contamination du sol en éléments traces métalliques. Le maïs, l’une des céréales les plus consommées au Burkina Faso, pourrait accumuler ces éléments toxiques et provoquer des problèmes sanitaires à l’homme à travers leur consommation. Pour évaluer le potentiel de translocation du maïs, un essai est mis en place dans le périmètre maraicher de Sakabi, dans la commune de Bobo Dioulasso. Pour ce faire, des parcelles ont été confectionnées et organisées selon un dispositif en bloc complètement randomisé avec six répétitions. Des doses croissantes de 20, 40 et 60 tonnes de déchet par hectare ont été apportées dans les différentes parcelles pour constituer les traitements. Les échantillons de sol et la biomasse végétale ont été prélevés pour déterminer les teneurs en éléments traces métalliques. Les résultats des analyses montrent que les sols sont contaminés en métaux lourds et ont contribué à la translocation de ces derniers dans les différents organes du maïs. Les facteurs de translocation sont supérieurs à 1 dans tous les organes exception faite pour les tiges donc les valeurs sont comprises entre 0,5-0,8 et 0,76-0,93 respectivement pour le cadmium et le cuivre. En outre la corrélation de Pearson a montré une forte relation entre les teneurs en métaux lourds dans les différents organes. Lorsque le cadmium dans le sol augmente de 1 mg il y a une forte probabilité qu’il augmente de 0,22 mg dans les racines, 1,33 mg dans les tiges, 0, 31 mg dans les feuilles et 0,56 mg dans les grains. De même, au niveau du cuivre, il peut augmenter de 2,56 mg, 0,28 mg, 0,57 mg respectivement pour les racines, tiges et feuilles pour une augmentation de 1 mg de Cu dans le sol. Au niveau du plomb, il y a une forte probabilité que les teneurs dans les feuilles et dans les grains augmentent respectivement de 6,84 mg et 5,81 mg pour une augmentation de 1 mg de plomb dans le sol. Pour le cas du zinc, il peut augmenter de 0,61 mg, 0,17 mg, 0,15 mg respectivement pour les tiges, feuilles et grains pour une augmentation de 1 mg dans le sol.
This study aimed to assess soil organic carbon (SOC) and total nitrogen (TN) dynamics under fallow lands influenced by the perennial grass Andropogon gayanus and to show how the biological activity is improved during the Sudanian tillage system in the area of Bondoukuy (Western Burkina Faso). Soil samplings were done through cultivated plots (CP), ten (F10) and twenty (F20) years old fallow lands. Measurements were done in thickets and intergrowth areas of the perennial grass in two horizons: the topsoil (0-10 cm) and the subsoil (10-20 cm). Results showed that SOC concentrations are generally higher in the old (0.35%) than in the young fallow lands (0.29%) and in the cultivated plots (0.23%). TN concentrations followed the same pattern (0.022%, 0.017% for the old and young fallows lands and 0.013% for the cultivated plots). The C:N ratio observed (15~20) suggests an important soil organic matter (SOC and TN) maturation state in the fallow lands (F10 and F20) than in the cultivated plots (CP). Soil mineralization is also more important in the two fallow lands than in fields. For the total nitrogen mineralization, we have an important production of mineral nitrogen always in old fallow lands and a positive effect of the thicket on the net mineral nitrogen accumulation (p<0.05). The transition from thicket to intergrowth area permits obtaining positive variations which are relatively significant (p<0.05). A. gayanus fallow lands play an active role in managing SOC and TN dynamics. The most SOC and TN accumulated was found in the topsoil of thickets, where the maximum plant debris is located. Old fallow lands are best conditions for the recovery of SOC and TN from their steady states. Then, when clearing the vegetation for cultivation after the old fallow lands, there is an important input of fresh OM available for plants in the soil for 3 or 4 years. It is recommended to observe the old fallow phase prior to clearing for cropping.
L’utilisation des déchets urbains comme fertilisants organiques peut être à l’origine d’une contamination du sol en éléments traces métalliques. Le maïs, l’une des céréales les plus consommées au Burkina Faso, pourrait accumuler ces éléments toxiques et provoquer des problèmes sanitaires à l’homme à travers leur consommation. Pour évaluer le potentiel de translocation du maïs, un essai est mis en place dans le périmètre maraicher de Sakabi, dans la commune de Bobo Dioulasso. Pour ce faire, des parcelles ont été confectionnées et organisées selon un dispositif en bloc complètement randomisé avec six répétitions. Des doses croissantes de 20, 40 et 60 tonnes de déchet par hectare ont été apportées dans les différentes parcelles pour constituer les traitements. Les échantillons de sol et la biomasse végétale ont été prélevés pour déterminer les teneurs en éléments traces métalliques. Les résultats des analyses montrent que les sols sont contaminés en métaux lourds et ont contribué à la translocation de ces derniers dans les différents organes du maïs. Les facteurs de translocation sont supérieurs à 1 dans tous les organes exception faite pour les tiges donc les valeurs sont comprises entre 0,5-0,8 et 0,76-0,93 respectivement pour le cadmium et le cuivre. En outre la corrélation de Pearson a montré une forte relation entre les teneurs en métaux lourds dans les différents organes. Lorsque le cadmium dans le sol augmente de 1 mg il y a une forte probabilité qu’il augmente de 0,22 mg dans les racines, 1,33 mg dans les tiges, 0, 31 mg dans les feuilles et 0,56 mg dans les grains. De même, au niveau du cuivre, il peut augmenter de 2,56 mg, 0,28 mg, 0,57 mg respectivement pour les racines, tiges et feuilles pour une augmentation de 1 mg de Cu dans le sol. Au niveau du plomb, il y a une forte probabilité que les teneurs dans les feuilles et dans les grains augmentent respectivement de 6,84 mg et 5,81 mg pour une augmentation de 1 mg de plomb dans le sol. Pour le cas du zinc, il peut augmenter de 0,61 mg, 0,17 mg, 0,15 mg respectivement pour les tiges, feuilles et grains pour une augmentation de 1 mg dans le sol. The use of municipal waste as organic fertilizers may result in contamination of the soil with trace metals. Corn, one of the most widely consumed cereals in Burkina Faso, could accumulate these elements and cause health problems for humans. To assess the translocation potential of maize, a trial is being carried out in the Sakabi vegetable perimeter. To do this, plots were made and organized according to a completely randomized block device with six repetitions. Increasing amounts of waste 20, 40 and 60 tons per hectare were brought into the different plots to constitute the treatments. Soil samples and plant biomass were collected to determine trace metal content. The results of the analyzes show that the soils are contaminated with heavy metals and have contributed to their translocation to the different organs of the maize. The translocation factors are greater than 1 in all organs except for the rods, so the values are between 0.5-0.8 and 0.76-0.93 respectively for cadmium and copper. In addition, the Pearson correlation showed a strong relationship between the heavy metal contents in the different organs. When cadmium in soil increases by 1 mg, there is a high probability that it will increase by 0.22 mg in roots, 1.33 mg in stems, 0.31 mg in leaves, and 0.56 mg in grains. Similarly, at the level of copper, it can increase by 2.56 mg, 0.28 mg, 0.57 mg respectively for roots, stems and leaves for an increase of 1 mg of Cu in the soil. At this level, there is a high probability that leaf and grain levels will increase by 6.84 mg and 5.81 mg, respectively, for an increase of 1 mg lead in soil. For zinc, it can increase by 0.61 mg, 0.17 mg, 0.15 mg for stems, leaves and grains respectively for an increase of 1 mg in the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.