We describe an imaging-based method in intact cells to systematically screen yeast mutant libraries for abnormal morphology and distribution of fluorescently labeled subcellular structures. In this study, chromosomally expressed green fluorescent protein (GFP) fused to the peroxisomal targeting sequence 1, consisting of serine-lysine-leucine, was introduced into 4740 viable yeast deletion mutants using a modified synthetic genetic array (SGA) technology. A benchtop robot was used to create ordered high-density arrays of GFP-expressing yeast mutants on solid media plates. Immobilized live yeast colonies were subjected to high-resolution, multidimensional confocal imaging. A software tool was designed for automated processing and quantitative analysis of acquired multichannel three-dimensional image data. The study resulted in the identification of two novel proteins, as well as of all previously known proteins required for import of proteins bearing peroxisomal targeting signal PTS1, into yeast peroxisomes. The modular method enables reliable microscopic analysis of live yeast mutant libraries in a universally applicable format on standard microscope slides, and provides a step toward fully automated high-resolution imaging of intact yeast cells.
Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them.Electronic supplementary materialThe online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users.
BackgroundPresynaptically neurotoxic phospholipases A2 inhibit synaptic vesicle recycling through endocytosis.Principal FindingsHere we provide insight into the action of a presynaptically neurotoxic phospholipase A2 ammodytoxin A (AtxA) on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin.ConclusionsWe identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein–protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A2 work can open new ways to regulate endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.